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1 Introduction

In the current globalized economy, it is more natural to consider voluntarily played long-run games

than to look at the ordinary repeated games with the same opponents over time. One of the important

frameworks to analyze the voluntary dynamic games is the Voluntarily Separable Repeated Prisoner’s

Dilemma (VSRPD henceforth) of Fujiwara-Greve and Okuno-Fujiwara (2009). In this model, players

are randomly matched into pairs to play a Prisoner’s Dilemma, and, at the end of each period, partners

can choose simultaneously whether to stay with the same parter or not. A partnership dissolves if

at least one player chooses to leave. Actions are only observable within a pair. Hence it is possible

to defect and run away every period. This model describes double moral hazard problems in a large

mobile society.

Early studies of the VSRPD and closely related models (e.g., Datta, 1996, Ghosh and Ray, 1996,

Kranton, 1996, Carmichael and Macleod, 1997, Eeckhout, 2006, Fujiwara-Greve and Okuno-Fujiwara,

2009, and Rob and Yang, 2010) advocated initial trust-building/gradual cooperation to deter moral

hazard. The initial trust-building periods where no one cooperates serve as the punishment if one

defects and runs away when her/his partner starts cooperating. However, this requires that all players

in the society coordinate on the sufficient number of the trust-building periods.

Fujiwara-Greve et al. (2015) analyzed the fundamentally asymmetric equilibrium, which does not

require such a coordination in the society. In this equilibrium, conditional cooperators and myopic

defectors co-exist.1 Its logic of how cooperation can be sustained in a mobile society is different from

the trust-building idea: Because of the existence of defectors in the matching pool, cooperators want

to stay together and hence they cooperate. It also lays a foundation to a huge class of “tolerant”

equilibria (Fujiwara-Greve and Okuno-Fujiwara, 2019) and, in a subclass of Prisoner’s Dilemma, it is

more efficient than any Nash equilibrium consisting of trust-building strategies.

A drawback of the fundamentally asymmetric equilibrium is that it does not satisfy the (strong)

neutral stability defined in Fujiwara-Greve and Okuno-Fujiwara (2009). This stability requires that

each strategy in the support of an equilibrium must not be outperformed by any pure-strategy adopted

1See also a dynamic analysis of this equilibrium by Izquierdo et al. (2014), which is inspired by our earlier work,
Fujiwara-Greve and Okuno-Fujiwara (2012), that introduced the fundamentally asymmetric equilibrium.
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by sufficiently small measures of mutants. However, the myopic defector strategy in the fundamentally

asymmetric equilibrium is inferior to the one-period trust-building strategy, which plays D and stay in

the Prisoner’s Dilemma in the first period of any match, and becomes the conditional cooperator from

the second period on. Such mutants conduct “secret-handshake” (Robson, 1990 and Matsui, 1991) and

outperform the myopic defectors. Instead of focusing on the (strong) neutral stability, Fujiwara-Greve

et al. (2015) restricted the attention to the subclass of Prisoner’s Dilemma in which the fundamentally

asymmetric equilibrium is more efficient than trust-building equilibria. In this class, the fundamentally

asymmetric equilibrium is robust against equilibrium entrants within the trust-building strategies.

This paper considers any Prisoner’s Dilemma, enlarges the set of potential mutant strategies, and

shows that the fundamentally asymmetric equilibrium satisfies a more standard neutral stability2, in

the sense that the mean payoff of the equilibrium strategies is not worse than the mean payoff of the

mutants, when the set of potentially feasible mutant strategy distributions is appropriately restricted.

The new stability concept is the “matching-pool distribution” version of the Izquierdo & van Veelen

Neutrally Stable Distribution in Izquierdo et al. (2018), when any mutant distribution is possible.

The paper is organized as follows. In Section 2, the model and the fundamentally asymmetric

equilibrium are presented. In Section 3, we introduce the new neutral stability concept and show that

fundamentally asymmetric equilibrium satisfies it under “dispersed” mutant distributions. Section

4 concludes the paper with the remark that the restriction of potential mutant distributions is not

serious because the monomorphic Nash equilibrium consisting of the myopic defectors is not neutrally

stable with respect to the same set of potential mutant strategy distributions.

2 Model and Preliminaries

2.1 Voluntarily Separable Repeated Prisoner’s Dilemma

The model of Voluntarily Separable Repeated Prisoner’s Dilemma (VSRPD) introduced by Fujiwara-

Greve and Okuno-Fujiwara (2009) (henceforth Greve-Okuno) is a population game (Sandholm, 2010)

over a discrete time horizon. The population is homogeneous and of size 1.

2Since the component game is an extensive-form game, there is no Evolutionarily Stable Strategy (Maynard Smith
and Price, 1973 and Maynard Smith, 1982), which requires that the equilibrium strategy distribution performs strictly
better than mutants. See for example, Selten (1983).
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Figure 1: Timeline of the VSRPD

At the beginning of each period, each player either is matched with a partner from the previous

period or enters a random matching process to find a new partner.3 Newly matched players do not have

information regarding one another’s past actions. Matched partners play the symmetric Prisoner’s

Dilemma (Table 1), where their choices are observable only to their current partners. After observing

one another’s actions in the Prisoner’s Dilemma, the partners simultaneously choose between “Stay”

and “Leave”. A partnership dissolves if at least one partner chooses to leave. In addition, at the end

of each period, players face an exogenous risk of exiting from the society, which we call “death”, and

survives to the next period only with probability δ ∈ (0, 1). If a player dies, a new player enters the

society, keeping the population size constant. Newly born players and players who lose their partners

either through death or by choice enter the matching pool in the next period. In sum, a partnership

continues if and only if both partners live and choose to stay. In this case the partners play the

Prisoner’s Dilemma again in the next period, skipping the matching process. The game continues this

way ad infinitum. The time line is illustrated in Figure 1.

The one-shot payoffs in the Prisoner’s Dilemma are in Table 1, where g > c > d > ℓ and 2c ≧ g+ℓ.

The latter condition justifies our focus on (C,C) as the “focal” outcome of cooperative partnerships.

3Following Greve-Okuno, we assume that the matching probability is 1. This makes cooperation most difficult, under
the no-information-flow assumption below.
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Each individual player’s game continues with probability δ, hence δ is the effective discount factor of

a player. (However, even if both partners choose to stay in the partnership, the partnership continues

only with probability δ2.)

This model mimics a long-horizon, large market/society. Each player is so small that an individual

player’s strategy does not have an impact on the social distribution and her/his past behavior is difficult

to verify to a randomly matched new partner. With the ease of finding a new partner, this model

makes cooperation very difficult. In other words, if cooperative long-term partnerships are sustained

in this model, they also exist in models with some information transmission and/or “unemployment”

such that the probability of finding a new partner is less than 1 and waiting for a partner is costly.

2.2 Private strategies and match-independent strategies

In the VSRPD model, the largest class of pure strategies is the private strategies, which choose actions

based on each player’s private history from her/his birth until death. However, since the population is a

continuum and there is no information flow across partnerships, the “contagious” strategies (Kandori,

1992 and Ellison, 2006) that change behavior towards a new partner based on one’s private history

with past partners cannot make an impact on a positive measure of the population and hence are

irrelevant. Thus, although we define the private strategies for the completeness of the paper4, we

focus on equilibria consisting of match-independent strategies which base actions only on the (mutually

observable) history within the same partnership.

For each player, let τ = 1, 2, 3 . . . be her/his life periods starting at the “birth” into the matching

pool (not the calendar time of the game nor the periods in a particular match). Let H1 := {new} be

the degenerate set of “private histories” that a newborn player has, meaning that the current match

is a new partnership. For each τ = 2, 3, . . ., let

Hτ = {new} × [{C,D}2 × {Stay, Leave}2 × {new, continuing}](τ−1)

be the set of private histories of a player, which records whether the match is a new one or a continuing

one, and the action combinations within the experienced matches until the beginning of τ -th period

4This is also to clarify that a Nash equilibrium is defined as usual. We thank Michihiro Kandori for pointing out the
need of this clarification.
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of her/his life. (Recall that all players in the matching pool gets a partner every period. So each

player observes a PD action combination and Stay/Leave choice combination every period with some

partner. A player also learns whether the current match is a new one or a continuing one, but not the

past action history of a new partner.)

Definition 1 A (pure) private strategy of a player is a sequence of C/D and stay/leave decision rules

s = (xs,τ , ys,τ )
∞
τ=1 such that for all τ = 1, 2, . . .,

xs,τ : Hτ → {C,D};

ys,τ : Hτ × {C,D}2 → {Stay, Leave}.

The set of pure private strategies is denoted by S. Next, to define match-independent strategies,

denote by t = 1, 2, . . . the period within the same partnership. If a partnership dissolves, the next

partnership starts at t = 1.

Definition 2 For each period t = 2, 3 . . . in a partnership, define the set of partnership histories at

the beginning of the period t, as private histories of a single continuing match for t-periods:

Ht := {new} × [{C,D}2 × {(Stay, Stay)} × {continuing}]t−1

and the partnership history at t = 1 is the degenerate one; H1 = {new}.

Definition 3 A (pure) match-independent strategy is a sequence of C/D and stay/leave decision rules

s = (xs,t, ys,t)
∞
t=1 which only depend on the partnership periods t = 1, 2, . . . and partnership histories;

xs,t : Ht → {C,D};

ys,t : Ht × {C,D}2 → {Stay, Leave}.

If a player uses a pure, match-independent strategy s, (s)he always chooses the same action xs,1 ∈

{C,D} at the beginning of any new match, and follows s thereafter in any match. The set of pure,

match-independent strategies is denoted by S. Denote by P(S) the set of all probability distributions

over S. A strategy distribution p ∈ P(S) is interpreted that p(s) ∈ [0, 1] of the players use the pure

strategy s, for each s in the support of p, by the Law of Large Numbers (Sun, 2006). For notational

simplicity, when we write a “strategy distribution” s ∈ S, we mean the distribution in P(S) that puts

mass one on s.
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2.3 Average payoff function

From now on we focus on match-independent strategies. Each strategy’s long-run payoff should be

measured from its birth into the matching pool until its random death. Hence we focus on the stability

of stationary strategy distributions in the matching pool.5 Stationarity is needed to explicitly

compute the average long-run payoff of each strategy.

For any s, s′ ∈ S, let T (s, s′) be the planned duration of the partnership between a player with

strategy s and a player with strategy s′, and let U(s, s′) be the total expected payoff for the s-player

matched with an s′-player. Under the stationary distribution p, the probability of being matched with

an s′-player is p(s′) every period, by the Law of Large Numbers of the dynamic random matching

framework (Duffie et al., 20186). Hence the lifetime expected payoff V (s; p) of an s-player facing a

stationary distribution p (with a countable support) in the matching pool is recursively formulated as

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
U(s, s′) + [δ(1− δ){1 + δ2 + · · ·+ δ2(T{s,s′)−2}}+ δ2{T (s,s′)−1} · δ]V (s; p)

]
.

(1)

To explain, the s-player loses the partner to “death” before the T (s, s′)-th period with probability

δ(1 − δ){1 + δ2 + · · · + δ2{T (s,s′)−2)}. With probability δ2{T (s,s′)−1} · δ, the partnership successfully

continues T (s, s′) periods and the s-player lives to the next period to go back to the matching pool.

Denote the expected length of an (s, s′)-pair by L(s, s′) = 1 + δ2 + · · ·+ δ2{T (s,s′)−1}. Then,

δ(1− δ){1 + δ2 + · · ·+ δ2{T (s,s′)−2}}+ δ2{T (s,s′)−1} · δ = 1− (1− δ)L(s, s′),

where (1 − δ)L(s, s′) is the probability that the s-player dies when the partnership could continue.

5Because the partnerships may not end simultaneously for all players, the social strategy distribution is not the same
as the one in the matching pool, in general. However, there should be a continuous bijection between stationary strategy
distributions in the matching pool and those in the society. See footnote 7 in Greve-Okuno.

6Their “mutation” should be interpreted as changes of each player’s “states” which is a combination of whether the
player is a newborn or not and the strategy (s)he has.
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Using this, (1) can be arranged as follows.

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
U(s, s′) + {1− (1− δ)L(s, s′)}V (s; p)

]
=

[ ∑
s′∈supp(p)

p(s′) · U(s, s′)
]
+ V (s; p)

[ ∑
s′∈supp(p)

p(s′)−
∑

s′∈supp(p)

p(s′)(1− δ)L(s, s′)
]

=
[ ∑
s′∈supp(p)

p(s′) · U(s, s′)
]
+ V (s; p)

[
1− (1− δ)

∑
s′∈supp(p)

p(s′)L(s, s′)
]
.

Thus, the average lifetime expected payoff of an s-player facing a stationary distribution p in the

matching pool is

v(s; p) := (1− δ)V (s; p) =

∑
s′∈supp(p) p(s

′)U(s, s′)∑
s′∈supp(p) p(s

′)L(s, s′)
. (2)

Unless p is a symmetric distribution of a single pure-strategy, this average lifetime payoff is not

linear in the share p(s′) of any strategy s′ ∈ supp(p). For later reference, denote the numerator by

U(s; p) :=
∑

s′∈supp(p) p(s
′)U(s, s′) and the denominator by L(s; p) :=

∑
s′∈supp(p) p(s

′)L(s, s′). These

are linear in the share of each strategy, and we have that

v(s; p) =
U(s; p)

L(s; p)
. (3)

2.4 Fundamentally asymmetric equilibrium

Let us define the fundamentally asymmetric equilibrium of Fujiwara-Greve et al. (2015).

Definition 4 Let c0-strategy be a match-independent strategy7 as follows: in any period t = 1, 2, . . .

of a partnership and after any partnership history, play C and Stay if and only if (C,C) is observed,

i.e., for any h ∈ Ht, xc0,t(h) = C, yc0,t(h, (C,C)) = Stay, and yc0,t(h, (a, a
′)) = Leave for any (a, a′) ̸=

(C,C). (The first coordinate in (a, a′) is the player’s own action.)

Let d0-strategy be a match-independent strategy as follows: in any period t = 1, 2, . . . and after any

partnership history h ∈ Ht, play D and Leave for any observation, i.e., xd0,t(h) = D, yd0,t(h, (a, a
′)) =

Leave for any (a, a′) ∈ {C,D}2.

7To be precise, this is a class of strategies, because we allow any off-path action plan in the information sets which
are not reachable. The same caveat applies to other definitions of specific strategies.
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Figure 2: Locally stable c0-d0 equilibrium

The c0-strategy is similar to the C-trigger strategy in the ordinary repeated Prisoner’s Dilemma,

but leaving the partnership is the punishment. The d0-strategy is the most myopic strategy. The

d0-strategy constitutes a symmetric Nash equilibrium8 for any δ ∈ (0, 1), but the c0-strategy does not.

An interesting property of the VSRPD is that these two strategies can make a Nash equilibrium.9

Definition 5 A stationary strategy distribution p ∈ P(S) in the matching pool is a Nash equilibrium

if, for all s ∈ supp(p) and all s′ ∈ S,

v(s; p) ≧ v(s′; p). (4)

Lemma 1 (Fujiwara-Greve and Okuno-Fujiwara (2012), Fujiwara-Greve et al. (2015) and Izquierdo

et al. (2014)) There exists δc0d0 ∈ (0, 1) such that δ > δc0d0 if and only if there is a unique α(δ) ∈ (0, 1),

such that the bimorphic distribution pc0d0(δ) = α(δ) · c0 + {1 − α(δ)} · d0 is a Nash equilibrium with

the following “local stability” property: there exists a neighborhood U of α(δ) such that for any α ∈ U ,

α ⋛ α(δ) ⇐⇒ v(d0;α · c0 + (1− α) · d0) ⋛ v(c0;α · c0 + (1− α) · d0). (5)

8See Greve-Okuno Section 2.3, where it is called the d̃-strategy.
9Although we did not explicitly derive v(s′; p) for each general private strategy s′, it is possible to compute the

continuation payoffs of all relevant one-step deviations, which are not restricted to be match-independent ones.
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Figure 2 illustrates the intuition behind the payoff-equivalence of the c0- and the d0-strategy and

the local stability, for sufficiently large δ. For notational convenience, for each z ∈ {c0, d0} and any

α ∈ [0, 1], denote

v0(z;α) := v(z;α · c0 + (1− α) · d0).

Explicitly, the average payoff of the c0-strategy is

v0(c0;α) =
α · U(c0, c0) + (1− α)U(c0, d0)

α · L(c0, c0) + (1− α)L(c0, d0)
=

α · c
1−δ2

+ (1− α)ℓ

α · 1
1−δ2

+ (1− α)
. (6)

Hence it is monotone increasing and concave in α. By contrast, the average payoff of the d0-strategy

is linear in α:

v0(d0;α) =
α · U(d0, c0) + (1− α)U(d0, d0)

α · L(d0, c0) + (1− α)L(d0, d0)
= α · g + (1− α)d. (7)

The concavity of v0(c0;α) is due to the voluntary nature of partnerships. As the survival rate δ

increases, the average payoff of the c0-strategy increases for any α ∈ (0, 1), because c0-pairs last

longer. Hence, the average payoff function of the c0-strategy becomes more concave as δ increases.

For sufficiently high δ’s, the average payoff functions of the two strategies have two intersections and

the one with the larger share of the c0-strategy is locally stable. Let us call this share α(δ) the C-D

ratio.

3 Evolutionary Stability of the Fundamentally Asymmetric Equi-
librium

3.1 S-Neutral Stability

Fujiwara-Greve et al. (2015) showed that the fundamentally asymmetric equilibrium does not satisfy

Greve-Okuno’s neutral stability. We rename it as S-Neutral Stability where S signals the focus on

symmetric-strategy or single-strategy mutants. (Greve-Okuno focused on monomorphic equilibria

with monomorphic mutant distributions, and thus this stability was not so strong.)

Definition 6 (Greve-Okuno) A stationary strategy distribution in the matching pool p∗ ∈ P(S)

satisfies S-Neutral Stability with respect to S (denoted by S-NS(S)) if, for any s′ ∈ S, there exists

9



ϵ ∈ (0, 1) such that for any s ∈ supp(p∗) and any ϵ ∈ (0, ϵ),

v(s; (1− ϵ)p∗ + ϵ · s′) ≧ v(s′; (1− ϵ)p∗ + ϵ · s′). (8)

Remark 1 (Remark 1 of Fujiwara-Greve et al., 2015) For any δ ∈ (δc0d0 , 1), pc0d0(δ) does not satisfy

S-NS(S).

For the motivation of the rest of the paper, we explain the proof. Consider a strategy Dc0 ∈ S

such that, in the first period of any match, the Dc0-strategy plays D and stay for any observation and

in the second period of any match, its continuation strategy is c0 for any observation in t = 1. (See

Definition 9.) Then for any ϵ ∈ (0, 1)

v(Dc0 ; (1− ϵ)pc0d0(δ) + ϵ ·Dc0) > v(d0; (1− ϵ)pc0d0(δ) + ϵ ·Dc0).

This is because the Dc0-strategy behaves the same way as the d0-strategy does towards the equilibrium

strategies, but cooperate among themselves, i.e., the Dc0-strategy conducts secret-handshake (Robson,

1990 and Matsui, 1991). Therefore pc0d0(δ) does not satisfy (8).

However, it may be possible that (for sufficiently small ϵ) the c0-strategy earns a higher fitness

than the mutant, and the two equilibrium strategies together may beat the mutant as follows10:

α(δ)v(c0; (1− ϵ)pc0d0(δ) + ϵ ·Dc0) + {1− α(δ)}v(d0; (1− ϵ)pc0d0(δ) + ϵ ·Dc0)

≧ v(Dc0 ; (1− ϵ)pc0d0(δ) + ϵ ·Dc0).

This mean payoff of the equilibrium pure-strategies is the standard “fitness” measurement of a strategy

distribution (e.g., Sandholm, 2010, Izquierdo et al., 2018). However, as Fujiwara-Greve et al. (2015)

shows, the above inequality may not hold for all Prisoner’s Dilemma payoff parameters.

Another possibility is that the mutants are “dispersed” so that they do not concentrate on the

Dc0-strategy. For example, some mutants may choose the Dd0-strategy, which plays D and stay for

any observation in the first period, and play the d0-strategy as the continuation strategy in the second

period, for any observation in t = 1. (See Definition 9.) This strategy imitates both the d0- and

10For example, consider (g, c, d, ℓ, δ, ϵ) = (1250, 1150, 700, 600, 0.9, 0.1). Then the C-D ratio is α(δ) ≈ 0.7622, and the
mean payoff of the c0- and the d0-strategy in the post-entry distribution is (0.7622) · 1106 + (0.2377) · 1077.3 ≈ 1099.17,
while the payoff of the Dc0 -mutant is 1099.03.
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the Dc0-strategy and exploits the latter. As we see below, for any Prisoner’s Dilemma, there exists

A ⊂ (0, 1) such that for any α ∈ A,

α(δ) · v(c0; (1− ϵ)pc0d0(δ) + ϵ · q) + {1− α(δ)}v(d0; (1− ϵ)pc0d0(δ) + ϵ · q)

≧ α · v(Dc0 ; (1− ϵ)pc0d0(δ) + ϵ · q) + (1− α)v(Dd0 ; (1− ϵ)pc0d0(δ) + ϵ · q),

where q = αDc0+(1−α)Dd0 . That is, the fundamentally asymmetric equilibrium on average performs

(weakly) better than a range of mixed-mutant distributions. We generalize the above idea in the next

subsection.

3.2 Tolerant Strategies and Neutral Stability

To avoid measure-theoretic complications which do not give us new game-theoretic insights, from now

on we restrict our attention to strategy distributions with a countable support and let Q ⊂ P(S) be

the set of strategy distributions with a countable support. Moreover, we parameterize the stability

definition with respect to the set M of potential mutant distributions.

Definition 7 Given M ⊂ Q, a stationary strategy distribution in the matching pool p∗ ∈ Q is

Neutrally Stable with respect to the mutant distributions from M (denoted by NS(M)) if, for any

q ∈ M , there exists ϵ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ),

∑
s∈supp(p∗)

p∗(s)v(s; (1− ϵ)p∗ + ϵ · q) ≧
∑

s′∈supp(q)

q(s′)v(s′; (1− ϵ)p∗ + ϵ · q). (9)

Clearly if p∗ satisfies S-NS(S), then it satisfies NS(S) but may not satisfy NS(M) for some M ⊂

Q(⊂ P(S)). Definition 7 is the “matching-pool distribution” version of the Izquierdo & van Veelen

Neutrally Stable Distribution in Izquierdo et al. (2018), when M is the set of all strategy distributions

with a finite support. The larger the M is, the stronger the stability is. However, Remark 1 shows

that M cannot be Q for the fundamentally asymmetric equilibrium.

From now on we restrict possible mutant strategies as tolerant strategies, introduced by Fujiwara-

Greve and Okuno-Fujiwara (2017) and elaborated by Fujiwara-Greve and Okuno-Fujiwara (2019).
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Definition 8 For any k = 0, 1, 2, . . ., any k-period sequence11 X = (X1, X2, . . . , Xk) ∈ {C,D}k, and

any z ∈ {c0, d0}, the k-period tolerant strategy, denoted Xz, is a (match-independent) strategy such

that, in periods t = 1, 2, . . . of a partnership,

(Tolerant phase)

if t = 1: play X1 ∈ {C,D} and stay for any observation;

if 2 ≦ t ≦ k: if (C,C) is observed in the previous period, play the c0-strategy as the continuation

strategy, and otherwise play Xt ∈ {C,D} and stay for any observation;

(Commitment phase)

if t = k + 1: if (C,C) is observed in the previous period, play the c0-strategy as the continuation

strategy, and otherwise play the z-strategy as the continuation strategy.

In words, a tolerant strategy has three characteristics: (a) during the tolerant phase, unless (C,C)

is established, it stays and plays its “planned action sequence” X regardless of the partner’s reaction,

(b) if (C,C) is established during the tolerant phase, it shifts to the c0-strategy immediately (those

that play only D during the tolerant phase can be vacuously interpreted this way as well), and (c)

when the tolerant phase is over, it commits to one of the c0- and the d0-strategy.

This class includes the Xz-strategy with X =

k times︷ ︸︸ ︷
D · · ·D and z = c0 (we write this strategy as Dk

c0),

which is a tolerant version of the k-period trust-building strategy in Greve-Okuno. Therefore the

fundamentally asymmetric equilibrium does not satisfy S-NS, even if we restrict the set of mutant

strategies to the tolerant strategies, since the Dc0-strategy discussed in subsection 3.1 is a tolerant

strategy.

One-period tolerant strategies, which help the reader to understand the later results, are as follows.

Definition 9 The Cc0-strategy is a (match-independent) strategy such that

t = 1: play C and stay for any observation;

t = 2: play the c0-strategy as the continuation strategy for any observation in t = 1.

The Cd0-strategy is a strategy such that

11As a convention, let {C,D}0 = ∅. Hence the c0- and the d0-strategies are included as degenerate tolerant strategies.
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t = 1: play C and stay for any observation;

t = 2: play the c0-strategy if (C,C) is observed in t = 1, and d0-strategy otherwise.

The Dc0-strategy is a strategy such that

t = 1: play D and stay for any observation;

t = 2: play the c0-strategy as the continuation strategy for any observation in t = 1.

The Dd0-strategy is a strategy such that

t = 1: play D and stay for any observation;

t = 2: play the d0-strategy as the continuation strategy for any observation in t = 1.

In words, Xc0 (resp. Xd0) strategy first plays X ∈ {C,D} in a new match to “take a look” at

the new partner before committing to the c0 (resp. d0) strategy in the second period, and moreover,

if (C,C) is established in the first period, any of these strategies is happy to shift to the c0-strategy.

(Dz-strategies can be trivially interpreted this way.)

Let us justify our focus on the tolerant strategies. First, as argued in Fujiwara-Greve and Okuno-

Fujiwara (2019) (and illustrated in Figure 3), the set of tolerant strategies generates all relevant

play paths in the society, i.e., the only play paths which are not feasible by tolerant strategies are the

ones that Leave after (C,C) and those that stay but play D after (C,C). These two classes of play

paths generate lower continuation payoffs than that of some tolerant strategy. Alternatively, tolerant-

strategy mutants can be interpreted as potentially equilibrium entrants: tolerant strategies can

constitute a Nash equilibrium if they enter with the C-D ratio (see Fujiwara-Greve and Okuno-

Fujiwara, 2019), but the strategies that generate the infeasible paths cannot.12

Second, among the tolerant strategies, the explicit payoff comparison is possible. In general,

it is very difficult to explicitly compare the average payoffs of two (extensive-form) strategies

v(s; p) =

∑
s′∈supp(p) p(s

′)U(s, s′)∑
s′∈supp(p) p(s

′)L(s, s′)
, v(ŝ; p) =

∑
s′∈supp(p) p(s

′)U(ŝ, s′)∑
s′∈supp(p) p(s

′)L(ŝ, s′)
,

because both the denominator and the numerator can be different, due to the endogenous lengths of

partnerships.

12For a related concept, see Swinkels (1992).
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Figure 3: Feasible action sequences over two periods by tolerant strategies

By contrast, the structure of the tolerant strategies is so organized that a k-period tolerant strategy

never experiences longer partnerships than a k+1-period tolerant strategy with the same initial action

plan for k+1 periods (see Table 2). This makes the explicit payoff comparison possible, as in Lemmas

5 and 6 (in Appendix).

For each k = 0, 1, 2, . . ., the set of k-period tolerant strategies is denoted by

S̃k = {Xz ∈ S | X ∈ {C,D}k, z ∈ {c0, d0}},

and the set of all tolerant strategies with k-period or longer tolerant phase is denoted by S̃∞
k := ∪∞

j=kS̃j .

For notational convenience, define the set of all “C-start” and all “D-start” tolerant strategies.

C+ := {Xz ∈ S̃∞
0 | X1 = C}

D+ := {Xz ∈ S̃∞
0 | X1 = D}.

In words, a strategy in C+ (resp. D+) is a tolerant strategy which plays C (resp. D) in t = 1 in any

match, including the c0-strategy (resp. the d0-strategy).

Tolerant strategies have a convenient structure such that adding initial action plan to a tolerant

strategy makes a new tolerant strategy.
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Definition 10 For each k = 0, 1, 2, . . ., any (initial) k-period action sequence X ∈ {C,D}k, and any

strategy s ∈ C+ (or s ∈ D+), define the “concatenated” strategy Xs as a tolerant strategy such that

t = 1: play X1 ∈ {C,D} and stay for any observation;

2 ≦ t ≦ k: if (C,C) is observed in the previous period, play the c0-strategy as the continuation

strategy, and otherwise play Xt and stay for any observation;

t = k+1: if (C,C) is observed in the previous period, play the c0-strategy as the continuation strategy,

and otherwise play s as the continuation strategy.

Using the above notation, for each k = 0, 1, 2, . . . and any X ∈ {C,D}k, define the extended classes

of tolerant strategies with the same k-period initial action plan:

XC+ := {X′
s ∈ S̃∞

k | X′ = X, s ∈ C+}

XD+ := {X′
s ∈ S̃∞

k | X′ = X, s ∈ D+}.

(For k = 0, ∅C+ = C+ and ∅D+ = D+.) In words, any strategy in XC+ (resp. XD+) plays the initial

action sequence X for k-periods and C (resp. D) in k + 1-th period of any match unless (C,C) has

been established in the first k periods. (The commitment phase is the k +m+ 1-th period where m

is the length of the tolerant phase of s.)

Lemma 2 (Weak External Stability) For any δ ∈ (δc0d0 , 1), define

M0(δ) :=
{
q ∈ P(S̃∞

0 ) | sup
X∈{C,D}k, k=1,2,...

q
(
XC+∪XD+

)
>0

q
(
XC+

)
q
(
XC+ ∪XD+

) < α(δ)
}
.

For any δ ∈ (δc0d0 , 1) and any q ∈ M0(δ), there exists ϵ ∈ (0, 1) such that, for any ϵ ∈ (0, ϵ),

∀s′ ∈ C+ ∩ supp(q) \ {c0}, v(c0; p
PE(ϵ)) ≧ v(s′; pPE(ϵ));

∀s′ ∈ D+ ∩ supp(q) \ {d0}, v(d0; p
PE(ϵ)) ≧ v(s′; pPE(ϵ)),

where pPE(ϵ) = (1− ϵ)pc0d0(δ) + ϵ · q.

Proof of Lemma 2. See Appendix.
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Lemma 2 shows that any mutant strategy (in S̃∞
1 ) has at least one equilibrium strategy which

is not worse than the mutant. This property is similar to External Stability in the definition of von

Neumann-Morgenstern stable set.

The mutant distributions in M0(δ) have the following structure: if Xc0 is present in the mutant

distribution q, then supp(q) also contains some strategy from {Xd0 ,XDc0 ,XDd0 , . . .} with the same

X and

q(Xc0 ,XCc0 ,XCd0 , . . .)

q(Xc0 ,Xd0 ,XCc0 ,XCd0 ,XDc0 ,XDd0 . . .)
< α(δ).

It is also fine that supp(q) ⊂ {Xd0 | ∃X ∈ {C,D}k,∃k}.

The boundary of M0(δ) includes the distribution such that the relative ratio between Xc0-strategy

and Xd0-strategy is the C-D ratio, for any X. This is a Nash equilibrium itself (see the companion

paper, Fujiwara-Greve and Okuno-Fujiwara, 2019). In view of Remark 1, we cannot hope for weak

external stability when mutant distributions are outside of M0(δ).

We give an intuition of the proof of Lemma 2 for s′ ∈ C+ \ {c0}. Note that s′ is an m-period

tolerant strategy with the initial action plan CX = (C,X2, X3, . . . , Xm) (m can be 1, in which case

CX = C) and a commitment strategy z ∈ {c0, d0}. Table 2 shows the payoff sequences of such s′ up

to two-period tolerant ones, when they meet a partner also using a tolerant strategy.

Remark 2 Take any p ∈ P(S̃∞
0 ) and any z ∈ {c0, d0}.

U(Cz; p)− U(c0; p) = δ2[p(DC+) · U(z, c0) + p(DD+) · U(z, d0)] (10)

U(CCz; p)− U(Cc0 ; p) = δ4[p(DDC+) · U(z, c0) + p(DDD+) · U(z, d0)]

U(CDz; p)− U(Cd0 ; p) = δ4[
∑

X̃∈{C,D}

p(DX̃C+) · U(z, c0) + p(DX̃D+) · U(z, d0)].

The proof of Remark 2 is straightforward from Table 2 and is omitted. Intuitively, (a) when we

compare two tolerant strategies having the same initial action plan for k-periods, they have the same

payoff when they meet a partner using a k′-period tolerant strategy where k′ ≦ k, and (b) if (C,C)

is established with a partner before or in the k-th period, they also have the same payoff. Therefore,

to compare the 0-period tolerant c0-strategy and a 1-period tolerant Cz-strategy (i.e., k = 1), they

have the same payoff when (a) they meet a 0-period tolerant strategy (c0 or d0) or (b) they meet
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you\ partner c0 Cc0 Cd0 d0 Dc0 Dd0

CXz c, c, . . . c, c, . . . c, c, . . . ℓ ℓ,

{
c, c, . . . if X = C

g if X = D
ℓ,

{
ℓ if X = C

d if X = D

Cx c, c, . . . c, c, . . . c, c, . . . ℓ ℓ,

{
c, c, . . . if x = c0

g if x = d0
ℓ,

{
ℓ if x = c0

d if x = d0
c0 c, c, . . . c, c, . . . c, c, . . . ℓ ℓ ℓ

CCw CDw DCw DDw

CXz c, c, . . . c, c, . . . ℓ,

{
c, c, . . . if X = C

g,U(z, w) if X = D
ℓ,

{
ℓ, U(z, w) if X = C

d,U(z, w) if X = D

Cx c, c, . . . c, c, . . . ℓ,

{
c, c, . . . if x = c0

g if x = d0
ℓ,

{
ℓ if x = c0

d if x = d0
c0 c, c, . . . c, c, . . . ℓ ℓ

Table 2: Payoff sequence comparison of C-start strategies

a C-start tolerant strategy. Their payoff difference thus arises only with the partners in the class

D+ \ {d0} = DC+ ∪DD+.

Another key observation from Table 2 is that the payoff of Cz is the same with any partner in

DC+ = {Dc0 , DCc0 , DCd0 , . . .} (strategies that play (D,C) for the first two periods). Similarly, Cz

gets the same payoff with any partner in DD+ (strategies that play (D,D) for the first two periods).

This is because the Cz-strategy commits to z ∈ {c0, d0} in the second period of any match, so that the

partner’s plan from the third period on is irrelevant. In general, it is the (weakly) earlier-committing

strategy that determines the payoff sequence.

Using Remark 2, let us show that, if q ∈ M0(δ), for sufficiently small ϵ’s, the post-entry average

payoff of the c0-strategy is weakly greater than that of the Cz-strategy and CXz-strategy. Take any

q ∈ M0(δ) and let pPE(ϵ) = (1− ϵ)pc0d0(δ) + ϵ · q. From (10), for any z ∈ {c0, d0} and any ϵ ∈ (0, 1),

U(Cz; p
PE(ϵ))− U(c0; p

PE(ϵ))

L(Cz; pPE(ϵ))− L(c0; pPE(ϵ))
=

δ2[pPE(DC+) · U(z, c0) + pPE(DD+) · U(z, d0)]

δ2[pPE(DC+) · L(z, c0) + pPE(DD+) · L(z, d0)]

=
q(DC+) · U(z, c0) + q(DD+) · U(z, d0)

q(DC+) · L(z, c0) + q(DD+) · L(z, d0)
.

If q(DC+, DD+) > 0, then the above equality and q ∈ M0(δ) imply that

U(Cz; p
PE(ϵ))− U(c0; p

PE(ϵ))

L(Cz; pPE(ϵ))− L(c0; pPE(ϵ))
= v0

(
z;

q(DC+)

q(DC+, DD+)

)
< v0(z;α) = v0(c0;α).
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Note that v0(z;
q(DC+)

q(DC+,DD+)) is independent from ϵ. Since

lim
ϵ→0

v(c0; p
PE(ϵ)) = v0(c0;α),

there exists ϵ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ),

v0

(
z;

q(DC+)

q(DC+, DD+)

)
< v(c0; p

PE(ϵ)).

This translates into the following:

U(Cz; p
PE(ϵ))− U(c0; p

PE(ϵ))

L(Cz; pPE(ϵ))− L(c0; pPE(ϵ))
= v0

(
z;

q(DC+)

q(DC+, DD+)

)
< v(c0; p

PE(ϵ)) =
U(c0; p

PE(ϵ))

L(c0; pPE(ϵ))

⇐⇒ L(c0; p
PE(ϵ))[U(Cz; p

PE(ϵ))− U(c0; p
PE(ϵ))] < U(c0; p

PE(ϵ))[L(Cz; p
PE(ϵ))− L(c0; p

PE(ϵ))]

⇐⇒ U(Cz; p
PE(ϵ))

L(Cz; pPE(ϵ))
<

U(c0; p
PE(ϵ))

L(c0; pPE(ϵ))

⇐⇒ v(Cz; p
PE(ϵ)) < v(c0; p

PE(ϵ)).

If q(DC+, DD+) = 0, then clearly for any ϵ ∈ (0, 1),

v(Cz; p
PE(ϵ)) = v(c0; p

PE(ϵ)).

The comparison of the Cc0-strategy and a CCz-strategy is similar and, for sufficiently small ϵ’s, we

have

v(CCz; p
PE(ϵ)) ≦ v(Cc0 ; p

PE(ϵ)).

Finally, to compare Cd0 and CDz, we use the fact that

A1 +A2

B1 +B2
≦ max{A1

B1
,
A2

B2
},

for any B1, B2 > 0 (see Lemma 4). From Remark 2 and by the above inequality, if at least one of

q(DCC+, DCD+) > 0 or q(DDC+, DDD+) > 0 holds,

U(CDz; p
PE(ϵ))− U(Cd0 ; p

PE(ϵ))

L(CDz; pPE(ϵ))− L(Cd0 ; p
PE(ϵ))

≦ max
{
v0

(
z;

q(DCC+)

q(DCC+, DCD+)

)
, v0

(
z;

q(DDC+)

q(DDC+, DDD+)

)}
.

Then q ∈ M0(δ) implies that

U(CDz; p
PE(ϵ))− U(Cd0 ; p

PE(ϵ))

L(CDz; pPE(ϵ))− L(Cd0 ; p
PE(ϵ))

< v0(c0;α).
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For sufficiently small ϵ’s, v(c0; p
PE(ϵ)) is close to v0(c0;α) so that

U(CDz; p
PE(ϵ))− U(Cd0 ; p

PE(ϵ))

L(CDz; pPE(ϵ))− L(Cd0 ; p
PE(ϵ))

< v(c0; p
PE(ϵ)) =

U(c0; p
PE(ϵ))

L(c0; pPE(ϵ))

holds so that

v(CDz; p
PE(ϵ)) < v(Cd0 ; p

PE(ϵ)).

If both q(DCC+, DCD+) = 0 and q(DDC+, DDD+) = 0, then clearly

v(CDz; p
PE(ϵ)) = v(Cd0 ; p

PE(ϵ)).

Hence, combining the weak inequalities, for sufficiently small ϵ’s,

∀X ∈ {C,D}, v(CXz; p
PE(ϵ)) ≦ v(c0; p

PE(ϵ)).

This logic generalizes for an arbitrary C-start (resp. D-start) mutant strategy in comparison with the

c0-strategy (resp. d0-strategy).

Moreover, the local stability of the fundamentally asymmetric equilibrium implies Neutral Stability.

Proposition 1 For any δ ∈ (δc0d0 , 1), the fundamentally asymmetric equilibrium pc0d0(δ) = α(δ)c0 +

{1− α(δ)}d0 is NS(M0(δ)).

Proof of Proposition 1. Fix an arbitrary δ ∈ (δc0d0 , 1) and take any q ∈ M0(δ). For each ϵ ∈ (0, 1),

let pPE(ϵ) := (1 − ϵ)[α(δ) · c0 + {1 − α(δ)}d0] + ϵ · q. Then for each z ∈ {c0, d0}, v(z; pPE(ϵ)) =

v0(z; (1− ϵ)α(δ)+ ϵ · q(C+)), that is, the average payoff of z-strategy depends only on the share of the

set C+.

Lemma 2 implies that there exists ϵ̃ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ̃),

∀s′ ∈ C+ ∩ supp(q) \ {c0}, v(c0; p
PE(ϵ)) ≧ v(s′; pPE(ϵ)); (11)

∀s′ ∈ D+ ∩ supp(q) \ {d0}, v(d0; p
PE(ϵ)) ≧ v(s′; pPE(ϵ)). (12)

By (11) and (12), the group-mean payoff of q is bounded as follows.

∀ϵ ∈ (0, ϵ̃),
∑

s′∈supp(q)

q(s′)v
(
s′; pPE(ϵ)

)
≦ q(C+)v

(
c0; p

PE(ϵ)
)
+ {1− q(C+)}v

(
d0; p

PE(ϵ)
)
. (13)
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In view of (13), it suffices to show that there exists ϵ̂ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ̂),

q(C+)v
(
c0; p

PE(ϵ)
)
+ {1− q(C+)}v

(
d0; p

PE(ϵ)
)

≦ α(δ)v
(
c0; p

PE(ϵ)
)
+ {1− α(δ)}v

(
d0; p

PE(ϵ)
)

(14)

=
∑

z∈supp(pc0d0 )

pc0d0(s)v(s; p
PE(ϵ)).

For any ϵ ∈ (0, 1), define

f(ϵ) :=
[
α(δ)v(c0; p

PE(ϵ)) + {1− α(δ)}v(d0; pPE(ϵ))
]
−
[
q(C+)v(c0; p

PE(ϵ)) + {1− q(C+)}v(d0; pPE(ϵ))
]

= [α(δ)− q(C+)]
{
v(c0; p

PE(ϵ))− v(d0; p
PE(ϵ))

}
.

Notice that for any ϵ ∈ (0, 1),

α(δ) ⋛ pPE(ϵ)(C+) = (1− ϵ)α(δ) + ϵq(C+) ⇐⇒ α(δ) ⋛ q(C+).

By the local stability (5), there exists ϵ̂ > 0 such that for any ϵ ∈ (0, ϵ̂), pPE(ϵ)(C+) ∈ U and

α(δ)− q(C+) ⋛ 0 ⇐⇒ α(δ) ⋛ pPE(ϵ)(C+) ⇐⇒ v(c0; p
PE(ϵ))− v(d0; p

PE(ϵ)) ⋛ 0.

(See Figure 2.) Therefore, f(ϵ) ≧ 0, i.e., (14), holds for any ϵ ∈ (0, ϵ̂). Finally, let ϵ = min{ϵ̃, ϵ̂}. Then

∀ϵ ∈ (0, ϵ),
∑

s′∈supp(q)

q(s′)v
(
s′; pPE(ϵ)

)
≦

∑
z∈supp(pc0d0 )

pc0d0(s)v(s; p
PE(ϵ)).

□

4 Concluding Remarks

We have provided a new evolutionary foundation to the fundamentally asymmetric equilibrium, con-

sisting of conditional cooperators and myopic defectors. Although we restricted the potential set of

mutants, we allow any Prisoner’s Dilemma.

The stability of the fundamentally asymmetric equilibrium is not so weak because the monomor-

phic d0-distribution, which is a Nash equilibrium for any δ ∈ (0, 1), does not satsify NS(M0(δ)) for

sufficiently large δ. To see this, note that there is q ∈ M0(δ) such that q = α ·Dc0 + (1− α)Dd0 with

the property α < α. In this distribution, the mutant Dd0-strategy uses the other mutant strategy
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Dc0 as the “spring board” to earn more than d on average, while the d0-strategy cannot. Moreover,

when δ is large, Dc0-strategy also earns more than d on average, because the partnership with another

Dc0-strategy lasts for a very long time.

Remark 3 There exists δ ∈ [δc0d0 , 1) such that for any δ ∈ (δ, 1), the monomorphic distribution d0

does not satisfy NS(M0(δ)).

Proof. Consider a mutant distribution of the form q = α ·Dc0 +(1−α)Dd0 . For each ϵ ∈ (0, 1), write

pPE(ϵ) = (1− ϵ) · d0 + ϵ · q. The average post-entry payoffs are as follows.

v(d0; p
PE(ϵ)) = d;

v(Dd0 ; p
PE(ϵ)) =

(1− ϵ)d+ ϵ[α(d+ δ2g) + (1− α)(d+ δ2d)]

(1− ϵ) + ϵ(1 + δ2)
> d;

v(Dc0 ; p
PE(ϵ)) =

(1− ϵ)d+ ϵ[α(d+ δ2 c
1−δ2

) + (1− α)(d+ δ2ℓ)]

(1− ϵ) + ϵ[ α
1−δ2

+ (1− α)(1 + δ2)]
. (15)

Let us compare (15) with v(d0; p
PE(ϵ)).

v(Dc0 ; p
PE(ϵ)) > v(d0; p

PE(ϵ))

⇐⇒ d+ ϵδ2α
c

1− δ2
+ ϵδ2(1− α)ℓ > d[1 + ϵδ2α

1

1− δ2
+ ϵδ2(1− α)]

⇐⇒ α(c− d) > (1− α)(1− δ2)(d− ℓ).

Let x := δ2. The above inequality is equivalent to

α >
(1− x)(d− ℓ)

c− d+ (1− x)(d− ℓ)
=: h(x).

By differentiation, the threshold h(x) is decreasing in x (and converges to 0 as x → 1):

h′(x) = − (c− d)(d− ℓ)

[c− d+ (1− x)(d− ℓ)]2
< 0.

Note also that α(δ) is increasing in δ.13 Thus there exists δ∗ ∈ (0, 1) such that for any δ ∈ (δ∗, 1),

h(x) < α(δ).

13This can be seen from the fact that v0(d0;α) is constant in δ and ∂v0(c0;α)
∂δ

= 2(1−α)αδ(c−ℓ)

{1−δ2(1−α)}2 > 0, which is proved in

the Proof of Proposition 1 of Fujiwara-Greve et al. (2015).
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Let δ = max{δ∗, δc0d0}. Then for any δ ∈ (δ, 1), there exists α < α(δ) such that

v(Dc0 ; p
PE(ϵ)) > v(d0; p

PE(ϵ)),

so that q ∈ M0(δ) and for any ϵ ∈ (0, 1),

∑
s′∈supp(q)

q(s′)v(s′; (1− ϵ) · d0 + ϵ · q) > v(d0; (1− ϵ) · d0 + ϵ · q).

□

Finally, we note that when g− c is very small and δ is large, α(δ) becomes close to 1. To see this,

let δ → 1. Then v0(c0;α) → c. Since v0(d0;α) = αg + (1− α)d is independent of δ, we have

lim
δ→1

α(δ) =
c− d

g − d
.

Hence for “small stake” Prisoner’s Dilemmas with very long-lived players, the sufficient mutant set

M0(δ) is not restrictive, and the fundamentally asymmetric equilibrium consists mostly of the c0-

players. That is, nearly-symmetric cooperative society is neutrally stable with respect to nearly-all

tolerant strategy distributions.

Appendix: Proof of Lemma 2

Before proving Lemma 2, we give two technical lemmas to make it easy to compare the average

payoffs of different strategies, when they may differ not only in the numerator U(S; p) but also in

the denominator L(s; p). The next lemma makes the comparison easy. For any stationary strategy

distribution p in the matching pool and two pure strategies s, ŝ ∈ supp(p), define

∆U(ŝ, s; p) := U(ŝ; p)− U(s; p);

∆L(ŝ, s; p) := L(ŝ; p)− L(s; p).

These are linear in the shares of the strategies in the society and are easy to compute.
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Lemma 3 For any p and any s, ŝ ∈ supp(p),

(i) if ∆L(ŝ, s; p) > 0, then

v(s; p) > v(ŝ; p) ⇐⇒ v(s; p) >
∆U(ŝ, s; p)

∆L(ŝ, s; p)
;

(ii) if ∆L(ŝ, s; p) < 0, then

v(s; p) > v(ŝ; p) ⇐⇒ v(s; p) <
−∆U(ŝ, s; p)

−∆L(ŝ, s; p)
.

Proof of Lemma 3. By definition,

v(s; p) > v(ŝ; p)

⇐⇒ U(s; p)

L(s; p)
>

U(s; p) + ∆U(ŝ, s; p)

L(s; p) + ∆L(ŝ, s; p)

⇐⇒ U(s; p) ·∆L(ŝ, s; p) > L(s; p) ·∆U(ŝ, s; p), (16)

because L(s; p) ≧ 1 and L(ŝ; p) = L(s; p) + ∆L(ŝ, s; p) ≧ 1 for any s, ŝ, p.

If ∆L(ŝ, s; p) > 0, then the inequality (16) is equivalent to

U(s; p)

L(s; p)
>

∆U(ŝ, s; p)

∆L(ŝ, s; p)
.

If ∆L(ŝ, s; p) < 0, then (16) is equivalent to

U(s; p)

L(s; p)
<

∆U(ŝ, s; p)

∆L(ŝ, s; p)
=

−∆U(ŝ, s; p)

−∆L(ŝ, s; p)
.

□

Sometimes, the ratio ∆U(ŝ,s;p)
∆L(ŝ,s;p) has many terms in the numerator and the denominator. We have a

lemma to simplify the computation of ∆U(ŝ,s;p)
∆L(ŝ,s;p) as well.

Lemma 4 For any finite J ∈ N, any A1, . . . , AJ ∈ R, and any B1, . . . , BJ ∈ R++,

min
j=1,...,J

{Aj

Bj
} ≦

∑J
j=1Aj∑J
j=1Bj

≦ max
j=1,...,J

{Aj

Bj
}.
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Proof of Lemma 4. We show the “max” part by induction on J . The “min” part is analogous.

The statement clearly holds for J = 1. Suppose that the claim holds for J = n− 1.

Take any A1, . . . , An ∈ R and any B1, . . . , Bn ∈ R++.

Let Ai
Bi

:= maxj=1,2,...,n
Aj

Bj
. We want to show that∑n

j=1Aj∑n
j=1Bj

=
Ai +

∑
j∈{1,2,...,n}\{i}Aj

Bi +
∑

j∈{1,2,...,n}\{i}Bj
≦ Ai

Bi

which is equivalent to ∑
j∈{1,2,...,n}\{i}Aj∑
j∈{1,2,...,n}\{i}Bj

≦ Ai

Bi
.

(This equivalence uses the assumption that all Bj ’s are positive.) Since the claim holds for J = n− 1,∑
j∈{1,2,...,n}\{i}Aj∑
j∈{1,2,...,n}\{i}Bj

≦ max
j∈{1,2,...,n}\{i}

{Aj

Bj
}.

By the definition,

max
j∈{1,2,...,n}\{i}

{Aj

Bj
} ≦ max

j=1,...,n

Aj

Bj
=

Ai

Bi
.

Therefore, ∑
j∈{1,2,...,n}\{i}Aj∑
j∈{1,2,...,n}\{i}Bj

≦ Ai

Bi
.

□

Next, we give bounds to the average payoff difference between a k-period tolerant strategy in C+

(resp. D+) and the c0-strategy (resp. the d0-strategy), by generalizing Remark 2.

We introduce the notion of induced strategies.

Definition 11 For any k = 1, 2, . . . any k-period action sequence X = (X1, . . . , Xk) ∈ {C,D}k, any

z ∈ {c0, d0}, and any m = 0, 1, 2, . . . , k − 1, the induced m-period tolerant strategy of the (k-period

tolerant) Xz-strategy is an m-period tolerant strategy X′
xm+1

such that the planned action sequence

for initial m periods is the same, X′ = (X1, . . . , Xm), and the commitment continuation strategy in

m+ 1-th period of a match is

xm+1 =

{
c0 if Xm+1 = C

d0 if Xm+1 = D.
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Lemma 5 For any k = 1, 2, . . ., take any k-period tolerant strategy Xz ∈ S̃k and its induced (k − 1)-

period tolerant strategy X′
xk

∈ S̃k−1. Then, for any p ∈ P(S̃∞
0 ), their total expected payoff difference

is

∆U(Xz,X
′
xk
; p) = δ2k

∑
X̃∈{C,D}k

(Xt,X̃t )̸=(C,C) ∀t=1,...,k

[p(X̃C+)U(z, c0) + p(X̃D+)U(z, d0)]

Proof of Lemma 5. Fix an arbitrary k ∈ {1, 2, . . .}. For notational simplicity, let ŝ = Xz be a k-

period tolerant strategy and its induced (k−1)-period tolerant strategy be s∗ = X′
xk
. Fix an arbitrary

τ -period tolerant strategy s = X̃z̃ as the partner.

Step 1: If τ ≦ k − 1, then ŝ and s∗ have the same payoff sequence in the partnership with s:

∀τ ≦ k − 1, ∀ X̃z̃ ∈ S̃τ , U(ŝ, X̃z̃)− U(s∗, X̃z̃) = 0. (17)

Proof of Step 1: In the first period of the match with s, both ŝ and s∗ obtain the one-shot payoff

of u(X1, X̃1). If (X1, X̃1) = (C,C), then both ŝ and s∗ obtain the sequence of payoffs c, c, . . . as long

as the partners lives.

If (X1, X̃1) ̸= (C,C), both partners survive, and τ > 0, then in the second period of the match

with s = X̃z̃, both ŝ and s∗ obtain the same one-shot payoff of u(X2, X̃2). If (X2, X̃2) = (C,C), then

both ŝ and s∗ obtain the sequence of payoffs c, c, . . . as long as the partners live.

This is repeated until the τ -th period of the match as long as (C,C) is not established and both

partners survive. In the τ +1 period of the match after (Xτ , X̃τ ) ̸= (C,C), s commits to z̃ ∈ {c0, d0}.

Since ŝ and s∗ have not committed and have the same action plan at τ +1, the payoff sequences that

ŝ and s∗ obtain with s are the same. □

Lemma 6 For any k = 1, 2, . . . and any m < k, take any k-period tolerant strategy Xz ∈ S̃k and its

induced m-period tolerant strategy X′
xm+1

∈ S̃m. Then, for any p ∈ P(S̃∞
0 ),

∆U(Xz,X
′
xm+1

; p)

∆L(Xz,X′
xm+1

; p)
≦ max

j=m+1,...,k
max

X̃∈{C,D}j
(Xt,X̃t )̸=(C,C),∀t=1,...,j

v
(
xj+1;

p(X̃C+)

p(X̃C+ ∪ X̃D+)

)
; (18)

∆U(Xz,X
′
xm+1

; p)

∆L(Xz,X′
xm+1

; p)
≧ min

j=m+1,...,k
min

X̃∈{C,D}j
(Xt,X̃t )̸=(C,C),∀t=1,...,j

v
(
xj+1;

p(X̃C+)

p(X̃C+ ∪ X̃D+)

)
, (19)
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where

xj+1 =

{
c0 if Xj+1 = C

d0 if Xj+1 = D,

for j = m+ 1, . . . , k − 1, and xk+1 = z.

Proof of Lemma 6. Take any m < k and a k-period tolerant strategy sk := Xz ∈ S̃k. For each

j = m,m+ 1, . . . , k − 1, sk’s induced j-period tolerant strategy sj = X′
xj+1

∈ S̃j is defined by

X′ = (X1, . . . , Xj);

xj+1 =

{
c0 if Xj+1 = C

d0 if Xj+1 = D.

For any p ∈ P(S̃∞
0 ), the payoff difference between sk and sm can be decomposed as

∆U(sk, sm; p) = ∆U(sk, sk−1; p)+∆U(sk−1, sk−2; p)+ . . .+∆U(sm+1, sm; p) =
k∑

j=m+1

∆U(sj , sj−1; p).

Similarly, the expected partnership length difference is decomposed as

∆L(sk, sm; p) = ∆L(sk, sk−1; p) + ∆L(sk−1, sk−2; p) + . . .+∆L(sm+1, sm; p) =
k∑

j=m+1

∆L(sj , sj−1; p).

By Lemma 5, for each j = m+ 1,m+ 2, . . . , k,

∆U(sj , sj−1; p)

∆L(sj , sj−1; p)
=

∑
X̃∈{C,D}j

(Xt,X̃t )̸=(C,C) ∀t=1,...,j

δ2j p(X̃C+ ∪ X̃D+)Ucd

(
xj+1;

p(X̃C+)

p(X̃C+∪X̃D+)

)
∑

X̃∈{C,D}j
(Xt,X̃t )̸=(C,C) ∀t=1,...,j

δ2j p(X̃C+ ∪ X̃D+)Lcd

(
xj+1;

p(X̃C+)

p(X̃C+∪X̃D+)

) .
(Note that xk+1 = z.) By Lemma 4, for each j = m + 1,m + 2, . . . , k,

∆U(sj ,sj−1;p)
∆L(sj ,sj−1;p)

is bounded as

follows.

∆U(sj , sj−1; p)

∆L(sj , sj−1; p)
≦ max

X̃∈{C,D}j
(Xt,X̃t )̸=(C,C) ∀t=1,...,j

v
(
xj+1;

p(X̃C+)

p(X̃C+ ∪ X̃D+)

)
. (20)

Furthermore, by Lemma 4 again,

∆U(sk, sm; p)

∆L(sk, sm; p)
=

∑k
j=m+1∆U(sj , sj−1; p)∑k
j=m+1∆U(sj , sj−1; p)

≦ max
j=m+1,...,k

∆U(sj , sj−1; p)

∆L(sj , sj−1; p)
. (21)

(20) and (21) imply that

∆U(sk, sm; p)

∆L(sk, sm; p)
≦ max

j=m+1,...,k

∆U(sj , sj−1; p)

∆L(sj , sj−1; p)
≦ max

j=m+1,...,k
max

X̃∈{C,D}j
(Xt,X̃t) ̸=(C,C) ∀t=1,...,j

v
(
xj+1;

p(X̃C+)

p(X̃C+ ∪ X̃D+)

)
.
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This is (18). Derivation of (19) is analogous. □

Proof of Lemma 2. Fix an arbitrary q ∈ M0(δ) and let pPE(ϵ) = (1− ϵ)pc0d0 + ϵq. Recall that, for

each s ∈ {c0, d0},

lim
ϵ→0

v(s; pPE(ϵ)) = v(c0;α(δ)).

Hence, in view of Lemma 3 (i), it suffices to prove that, for any ϵ ∈ (0, 1),

∀s′ ∈ C+ ∩ supp(q) \ {c0},
∆U(s′, c0; p

PE(ϵ))

∆L(s′, c0; pPE(ϵ))
< v(c0;α(δ)); (22)

∀s′ ∈ D+ ∩ supp(q) \ {d0},
∆U(s′, d0; p

PE(ϵ))

∆L(s′, d0; pPE(ϵ))
< v(d0;α(δ)). (23)

Without loss of generality, assume that C+∩supp(q)\{c0} ̸= ∅ and take any s′ ∈ C+∩supp(q)\{c0}.

There exists k such that s′ ∈ S̃k. The bound (18) in Lemma 6 implies that

∆U(s′, c0; p
PE(ϵ))

∆L(s′, c0; pPE(ϵ))
≦ max

j=1,...,k
max

X̃∈{C,D}j
(Xt,X̃t) ̸=(C,C) ∀t=1,...,j

v
(
xj+1;

pPE(X̃C+)

pPE(X̃C+ ∪ X̃D+)

)
,

where xj+1 = c0 (resp. d0) if Xj+1 = C (resp. D) for each j = 1, . . . , k − 1, and xk+1 = z. Since

X̃C+ and X̃D+ are subsets of 1-period and longer tolerant strategies, pPE(X̃C+) = ϵ · q(X̃C+) and

pPE(X̃C+ ∪ X̃D+) = ϵ · q(X̃C+ ∪ X̃D+). Hence the above inequality is equivalent to

∆U(s′, c0; p
PE(ϵ))

∆L(s′, c0; pPE(ϵ))
≦ max

j=1,...,k
max

X̃∈{C,D}j
(Xt,X̃t )̸=(C,C) ∀t=1,...,j

v
(
xj+1;

q(X̃C+)

q(X̃C+ ∪ X̃D+)

)
,

Thus the upper bound is independent of ϵ.

Since v(c0;α) and v(d0;α) are increasing in α, and by the assumption q ∈ M0(δ), for each j =

1, . . . , k,

max
X̃∈{C,D}j

(Xt,X̃t )̸=(C,C) ∀t=1,...,j

v
(
xj+1;

q(X̃C+)

q(X̃C+ ∪ X̃D+)

)
< v(xj+1;α(δ)) = v(c0;α(δ)).

Therefore (22) holds. The case of s′ ∈ D+ ∩ supp(q) \ {d0} is analogous. □
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