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1 Introduction

In the age of globalization, markets no longer resemble repeated games in which players always interact

with the same partners. Players can easily find and change partners via world-wide transportation

and the internet. However, the past behavior of newly found partner(s) may not be perfectly observ-

able, because there are always ways to erase one’s past record such as changing locations or names.1

The framework of voluntarily separable repeated Prisoner’s Dilemma2 (VSRPD) addresses this new

opportunity of moral hazard.

When one can easily find a new partner who cannot know the opponent’s past behavior, there is

no Nash equilibrium in which all agents in the society act cooperatively towards a new partner. This

is because, if all agents cooperate with strangers, a player who defects and changes partners every

period will earn the highest one-shot payoff each time, i.e., starting every new match with cooperation

is not a best response to itself.3

To sustain long-term cooperation, the literature proposes mainly two kinds of equilibria. One is

trust-building/gradual-cooperation equilibria, in which partners do not fully cooperate initially but

only after both players have persisted through low payoffs of mutual non-cooperation for a sufficient

number of periods.4 Defecting against a cooperative partner results in the slow process of trust-

building with a new partner, which is the punishment. The other is the “fundamentally asymmetric”

equilibrium (Fujiwara-Greve and Okuno-Fujiwara, 2012, Izquierdo et al., 2014, and Fujiwara-Greve et

al., 2015) which consists of conditional cooperators (who always cooperate but stays with the partner

if and only if mutual cooperation is observed) and myopic defectors (who always defect and leave

immediately). In this equilibrium, the existence of myopic defectors gives incentives for conditional

1See for example, Datta (1996).
2See for example, Ghosh and Ray (1996), Kranton (1996), Carmichael and Macleod (1997), Eeckhout (2006), Fujiwara-

Greve and Okuno-Fujiwara (2009), Rob and Yang (2010), and Mcadams (2011). Some of these use Prisoner’s Dilemma
with more than two actions. There are also dynamic analyses by Schumacher (2013) and Izquierdo et al. (2014), focusing
on stationary or Markov strategies.

3All of the above models assume one-to-one matching. In a many-to-many matching model, Immorlica et al. (2014)
showed that, if the one-shot deviation gain is small, the symmetric, fully cooperative equilibrium exists. The key is that,
in their model, cooperators can accumulate multiple partners while myopic defectors cannot.

4See also Watson (2002) for an exit game which gives gradualism.
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previous new
period (C,C) (D,C) (C,D) (D,D) match

Okuno-Fujiwara Stay rate 0.999 0.699 0.427 0.458
et al. (2019) C rate 0.963 0.510 0.587 0.3 0.3351

Lei et al. Stay rate 1 0.741 0.722 0.519
(estimated) (2018) C rate 0.811 0.666 0.264 0.268 0.165

Lee (2018) Stay rate 0.9983 0.906 0.636 0.6374
C rate 0.949 0.315 0.231 0.033 around 0.25

Honhon and (S, S) rate 0.998 0.804 0.655 0.36
Hyndman (2017) (C,C) rate 0.9776 0.2063 0.016 0.65/0.37

Table 1: Experimental observations of VSRPD5

cooperators to stay with each other, which requires mutual cooperation.

Although trust-building/gradual cooperation and the co-existence of cooperators and defectors are

both plausible in many contexts, we still observe different kinds of behavior in voluntary partnership

situations. Table 1 shows summary statistics of some recent experiments of (slightly varied) VSRPD

with no information flow across partnerships.6 Three robust observations across these experiments

are (i) that partnerships are not always terminated even if (C,C) is not played, (ii) that staying and

cooperation rate are nearly 100% after mutual cooperation, and (iii) that both C and D are chosen

after other action combinations as well as in new matches. (Table 1 should not be interpreted that

Markov strategies are the most common behavior. See Okuno-Fujiwara et al., 2019.) Although the

efficient behavior (ii) has been embedded in all existing equilibria, the tolerant behavior (i) and the

behavioral diversity (iii) (in particular after mis-coordination) have never been addressed because

all existing equilibria use immediate termination of a partnership as the main disciplining device (cf.

Lei et al., 2018).

In this paper we construct new equilibria which are consistent with the observations (i) to (iii).

5We computed Lee’s C rate from her Table 10 and Graph 2. (Pooled data of three treatments that allow voluntary
separation.) The C rates of new matches of Honhon and Hyndman (2017) are individual C rates for the very first period
of the dynamic game (0.65) and across all dynamic games (0.37) respectively.

6Okuno-Fujiwara et al. (2019) is most closely designed to implement the model of VSRPD using the doubly-
stochastic horizon such that each partnership and the entire dynamic game are independently and randomly ter-
minated every round. Lee (2018) and Honhon and Hyndman (2017) (TBA-U experiment) have only random termination
of the dynamic game. Lei et al. (2018) is a finite horizon (40 rounds) game. Lei et al. (2018) only reports estimated action
rates and Honhon and Hyndman (2017) do not report individual subjects’ action rates except for the new matches.
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The construction is by tolerant extensions of the conditional cooperator strategy and the myopic

defector strategy: each player has some periods of initial tolerant phase, during which (s)he plays

a pre-planned action sequence and does not voluntarily leave the match regardless of the partnership

history, except when (C,C) is established, in which case (s)he becomes a conditional cooperator.

After the tolerant phase is over, (s)he commits to either the conditional cooperator strategy or the

myopic D-and-Leave strategy. This class of tolerant strategies describes human behaviors such that

people want to “wait and see” how a new partnership develops before deciding to commit to a certain

strategy. Since you are not fully committed to a certain behavior rule, you can also expect that the

partner does not either and can tolerate her/his behavior for some time. As the strategies to commit,

we simplify the analysis by focusing on the two simple but important strategies in the fundamentally

asymmetric equilibrium of Fujiwara-Greve et al. (2015).

The existence of the fundamentally asymmetric equilibrium guarantees the existence of the tolerant

equilibria (parameterized by the maximal length of the tolerant phase among the players). Therefore,

voluntary relationships do not necessarily imply gradual cooperation nor a simple dichotomy of co-

operators and defectors. Any action combination sequence can be observed for some periods, unless

(C,C) is chosen. The model has a single homogeneous population facing an identical game, and thus

we showed that heterogeneity among player characteristics is not needed for this behavioral diversity.

Tolerance and behavioral diversity support each other. On one hand, the tolerant phase allows

initial behavioral diversity, because players stay after any partnership history with the hope to coor-

dinate on mutual cooperation eventually or to exploit the partner at the end. On the other hand,

behavioral diversity makes tolerance and long-term cooperation viable for two reasons. First, after

any initial action history of a match, there is still a chance that the current partner cooperates in

the future, because of the diverse strategy distribution in the matching pool from which the current

partner comes. Second, going back to the random matching pool is risky because of the behavioral

diversity as well.

The tolerant equilibria, with varied length of the initial tolerant phase, are all payoff-equivalent to
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one another, and the degenerate one is the fundamentally asymmetric equilibrium. Fujiwara-Greve

et al. (2015) showed that the fundamentally asymmetric equilibrium is more efficient than any Nash

equilibrium consisting of trust-building/gradual-cooperation strategies, under some payoff condition

of the Prisoner’s Dilemma. Hence the tolerant equilibria are also more efficient than any trust-building

equilibrium under the same condition.

Since the game is an extensive-form game, it is desirable to investigate some refinements of Nash

equilibria. We consider evolutionary stability, which is a strong refinement7 of Nash equilibria by

requiring robustness against positive measures of “mutants” who play different strategies from the

equilibrium ones. Our model naturally embeds the underlying assumptions of evolutionary game

models: it is a population game (Sandholm, 2010) and there is a death and birth process where natural

selection as well as mutation/experimentation can take place. Moreover, evolutionary stability does

not require that players know/have a consistent belief of the matching pool strategy distribution,

which is also the case in experiments and the real world.

We show that tolerant equilibria are not less or more evolutionarily stable than trust-building

equilibria. Specifically, tolerant equilibria are robust against “dispersed” mutants but not robust

against coordinated pure-strategy mutants. By contrast, the (intolerant) trust-building equilibria are

robust against any coordinated pure-strategy mutant, but not robust against some combinations of

tolerant mutants, including the dispersed ones. We also note that Nash equilibria with only defecting

players (tolerant or not) are less stable than both tolerant and trust-building equilibria.

In summary, tolerance and huge behavioral diversity, including cooperation with strangers, are

equilibrium phenomena in a homogeneous population, even though players can defect and run away

without information flow to future partners. This is an encouraging result for cooperative people under

globalization. Moreover, there is no theoretical foundation that exclusion of heterogenous individuals

from a population necessarily leads to a coordinated, cooperative society.

7For normal-form games, Evolutionarily Stable Strategy concept (Maynard Smith and Price, 1973 and Maynard
Smith, 1982) is a stronger requirement than trembling-hand perfect equilibrium (because the ESS constitutes a proper
equilibrium, see van Damme, 1987), and trembling-hand perfect equilibrium and sequential equilibrium are essentially
the same (Selten, 1975).

4



C D

C c, c ℓ, g

D g, ℓ d, d

Table 2: Prisoner’s Dilemma: g > c > d > ℓ and 2c ≧ g + ℓ.

The rest of the paper is organized as follows. In Section 2, we describe the model and the funda-

mentally asymmetric equilibrium of Fujiwara-Greve et al. (2015), which is the “basis” of the tolerant

equilibria. In Section 3, we construct the tolerant equilibria and examine their properties. Section 4

concludes the paper.

2 Model and Preliminaries

2.1 Voluntarily Separable Repeated Prisoner’s Dilemma

The model of Voluntarily Separable Repeated Prisoner’s Dilemma (VSRPD) introduced by Fujiwara-

Greve and Okuno-Fujiwara (2009) (henceforth Greve-Okuno) is a population game where randomly

matched pairs of agents play the Prisoner’s Dilemma (Table 2) repeatedly as long as both partners

choose to stay. The time horizon is discrete, and the population is homogeneous and of size 1.

The time line (illustrated in Figure 1) and information structure are as follows. At the beginning of

each period, each player either is matched with a partner from the previous period or enters a random

matching process to find a new partner.8 Newly matched players do not have information regarding

one another’s past actions. Matched partners play the symmetric Prisoner’s Dilemma, their choices

observable only to their current partners. After observing one another’s actions in the Prisoner’s

Dilemma, the partners simultaneously choose between “Stay” and “Leave”. A partnership dissolves if

at least one partner chooses to leave. In addition, at the end of each period, players face an exogenous

risk of exiting from the society, which we call “death”, and survives to the next period only with

probability δ ∈ (0, 1). If a player dies, a new player enters the society, keeping the population size

constant. Newly born players and players who lose their partners either through death or by choice

8Following Greve-Okuno, we assume that the matching probability is 1. This makes cooperation most difficult, under
the no-information-flow assumption below.
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Figure 1: Timeline of the VSRPD

enter the matching pool in the next period. In sum, a partnership continues if and only if both

partners live and choose to stay. In this case the partners play the Prisoner’s Dilemma again in the

next period, skipping the matching process. The game continues this way ad infinitum.

The one-shot payoffs in the Prisoner’s Dilemma are in Table 2, where g > c > d > ℓ and 2c ≧ g+ℓ.

The latter condition justifies our focus on (C,C) as the “focal” outcome of cooperative partnerships.

Even if partners could alternate (C,D) and (D,C), it is not better than repeated mutual cooperation.

Each individual player’s game continues with probability δ, hence δ is the effective discount factor of

a player. (However, even if both partners choose to stay in the partnership, the partnership continues

only with probability δ2.)

This model mimics a long-horizon, large market/society. Each player is so small that an individual

player’s strategy does not have an impact on the social distribution and her/his past behavior is difficult

to verify to a randomly matched new partner. With the ease of finding a new partner, this model

makes cooperation very difficult. In other words, if cooperative long-term partnerships are sustained

in this model, they also exist in models with some information transmission and/or “unemployment”

such that the probability of finding a new partner is less than 1 and waiting for a partner is costly.

2.2 Private strategies and match-independent strategies

In the VSRPD model, the largest class of pure strategies is the private strategies, which choose actions

based on each player’s private history from her/his birth until death. However, since the population is a

continuum and there is no information flow across partnerships, the “contagious” strategies (Kandori,
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1992 and Ellison, 1994) that change behavior towards a new partner based on one’s private history

with past partners cannot make an impact on a positive measure of the population and hence are

irrelevant. Thus, although we define the private strategies for the completeness of the paper9, we

focus on equilibria consisting of match-independent strategies which base actions only on the (mutually

observable) history within the same partnership.

For each player, let τ = 1, 2, 3 . . . be her/his life periods starting at the “birth” into the matching

pool (not the calendar time of the game nor the periods in a particular match). Let H1 := {new} be

the degenerate set of “private histories” that a newborn player has. For each τ = 2, 3, . . ., let

Hτ = {new} × [{C,D}2 × {Stay, Leave}2 × {new, continuing}](τ−1)

be the set of private histories of a player, which records whether the match is a new one or a continuing

one, and the action combinations within the experienced matches until the beginning of τ -th period

of her/his life. (Recall that all players in the matching pool gets a partner every period. So each

player observes a PD action combination and Stay/Leave choice combination every period with some

partner. A player also learns whether the current match is a new one or a continuing one, but not the

past action history of a new partner.)

Definition 1 A (pure) private strategy of a player is a sequence of cooperate/defect and stay/leave

decision rules s = (xs,τ , ys,τ )
∞
τ=1 such that for all τ = 1, 2, . . .,

xs,τ : Hτ → {C,D};

ys,τ : Hτ × {C,D}2 → {Stay, Leave}.

The set of pure private strategies is denoted by S. In particular (and following the literature), we

focus on the class of match-independent (private) strategies, defined below, to construct equilibria.

Denote by t = 1, 2, . . . the period within the same partnership. For each player, if a partnership

dissolves, the next partnership starts at t = 1.

9This is also to clarify that a Nash equilibrium is defined as usual. We thank Michihiro Kandori for pointing out the
need of this clarification.
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Definition 2 For each t = 2, 3 . . ., define the set of partnership histories as private histories of a single

continuing match for t-periods:

Ht := {new} × [{C,D}2 × {(Stay, Stay)} × {continuing}]t−1

and the partnership history at t = 1 is the degenerate one; H1 = {new}.

Definition 3 A (pure) match-independent strategy is a sequence of cooperate/defect and stay/leave

decision rules s = (xs,t, ys,t)
∞
t=1 which only depend on the partnership periods t = 1, 2, . . . and part-

nership histories;

xs,t : Ht → {C,D};

ys,t : Ht × {C,D}2 → {Stay, Leave}.

If a player uses a pure, match-independent strategy s, (s)he always chooses the same action xs,1 ∈

{C,D} at the beginning of any new match, and follows s thereafter in any match. The set of pure,

match-independent strategies is denoted by S. Denote by P(S) the set of all probability distributions

over S. A strategy distribution p ∈ P(S) is interpreted that p(s) ∈ [0, 1] of the players use the pure

strategy s, for each s in the support of p, by the Law of Large Numbers (Sun, 2006). For notational

simplicity, s ∈ S is also interpreted as the strategy distribution in P(S) that puts mass one on s.

From the evolutionary game perspective, we assume that each player is endowed with a pure

strategy throughout her/his life, but the analysis does not change if each player randomizes among

the equilibrium strategies at the birth and sticks to the realized pure-strategy for the rest of the life.

2.3 Average payoff function

Each strategy’s long-run payoff should be measured from its birth into the matching pool until its

random death. Hence we focus on the stability of stationary strategy distributions in the matching

pool.10 Stationarity is needed to explicitly compute the average long-run payoff of each strategy.

10The strategy distribution in the matching pool is not the same as the strategy distribution of the entire society,
because the partnerships do not end simultaneously for all players. However, each stationary distribution in the matching
pool induces a unique stationary distribution of all “states” of partnerships (classified by the partnership histories) in
the society. See footnote 7 of Greve-Okuno.
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For any s, s′ ∈ S, let T (s, s′) be the planned duration of the partnership between a player with

strategy s and a player with strategy s′, and let U(s, s′) be the total expected payoff for the s-player

matched with an s′-player. Under the stationary distribution p in the matching pool, the probability

of being matched with an s′-player is p(s′) every period, by the Law of Large Numbers of the dynamic

random matching framework (Duffie et al., 201811). Hence the lifetime expected payoff V (s; p) of an s-

player facing a stationary distribution p (with a countable support) in the matching pool is recursively

formulated as

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
U(s, s′) + [δ(1− δ){1 + δ2 + · · ·+ δ2(T{s,s′)−2}}+ δ2{T (s,s′)−1} · δ]V (s; p)

]
.

To explain, the s-player loses the partner due to “death” before the T (s, s′)-th period with probability

δ(1 − δ){1 + δ2 + · · · + δ2{T (s,s′)−2)}. With probability δ2{T (s,s′)−1} · δ, the partnership successfully

continues T (s, s′) periods and the s-player lives to the next period to go back to the matching pool.

Denote the expected length of an (s, s′)-pair by L(s, s′) = 1 + δ2 + · · ·+ δ2{T (s,s′)−1}. Then,

δ(1− δ){1 + δ2 + · · ·+ δ2{T (s,s′)−2}}+ δ2{T (s,s′)−1} · δ = 1− (1− δ)L(s, s′),

where (1 − δ)L(s, s′) is the probability that the s-player dies when the partnership could continue.

Hence,

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
U(s, s′) + {1− (1− δ)L(s, s′)}V (s; p)

]
=

[ ∑
s′∈supp(p)

p(s′) · U(s, s′)
]
+ V (s; p)

[ ∑
s′∈supp(p)

p(s′)−
∑

s′∈supp(p)

p(s′)(1− δ)L(s, s′)
]

=
[ ∑
s′∈supp(p)

p(s′) · U(s, s′)
]
+ V (s; p)

[
1− (1− δ)

∑
s′∈supp(p)

p(s′)L(s, s′)
]
,

so that the average lifetime expected payoff of an s-player facing a stationary distribution p in the

matching pool is

v(s; p) := (1− δ)V (s; p) =

∑
s′∈supp(p) p(s

′)U(s, s′)∑
s′∈supp(p) p(s

′)L(s, s′)
. (1)

11Their “mutation” should be interpreted as changes of each player’s “states” which is a combination of whether the
player is a newborn or not and the strategy (s)he has.
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Unless p is a symmetric distribution of a single pure-strategy, this average lifetime payoff is not

linear in the share p(s′) of any strategy s′ ∈ supp(p). For later reference, denote the numerator by

U(s; p) :=
∑

s′∈supp(p) p(s
′)U(s, s′) and the denominator by L(s; p) :=

∑
s′∈supp(p) p(s

′)L(s, s′). These

are linear in the share of each strategy, and we have that

v(s; p) =
U(s; p)

L(s; p)
. (2)

It is not easy to compare the average payoffs of different strategies, because they may differ not only

in the numerator U(s; p) but also in the denominator L(s; p). The next lemma makes the comparison

easy. For any stationary strategy distribution p ∈ P(S) in the matching pool and two pure strategies

s, ŝ ∈ S, define

∆U(ŝ, s; p) := U(ŝ; p)− U(s; p);

∆L(ŝ, s; p) := L(ŝ; p)− L(s; p).

These are linear in the shares of the strategies and are easy to compute.

Lemma 1 For any p ∈ P(S), any s ∈ S, and any ŝ ∈ S,

(i) if ∆L(ŝ, s; p) > 0, then

v(s; p) > v(ŝ; p) ⇐⇒ v(s; p) >
∆U(ŝ, s; p)

∆L(ŝ, s; p)
;

(ii) if ∆L(ŝ, s; p) < 0, then

v(s; p) > v(ŝ; p) ⇐⇒ v(s; p) <
−∆U(ŝ, s; p)

−∆L(ŝ, s; p)
.

Proof. See Appendix.

An intuition for Lemma 1 (i) is that, when ∆L(ŝ, s; p) > 0, the “less tolerant” s-strategy performs

better if and only if the average extra payoff ∆U(ŝ,s;p)
∆L(ŝ,s;p) that the “more tolerant” ŝ-strategy gets by

its tolerance is less than the payoff v(s; p) that s gets by going back to the matching pool. (Since s

and ŝ are facing the same strategy distribution p, longer L(ŝ; p) means that ŝ does not leave some

partnerships that s leaves.) Lemma 1 (ii) is analogously interpreted.
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Sometimes, the ratio ∆U(ŝ,s;p)
∆L(ŝ,s;p) has many terms in the numerator and the denominator. We have a

lemma to simplify the computation of ∆U(ŝ,s;p)
∆L(ŝ,s;p) as well.

Lemma 2 For any finite J ∈ N, any A1, . . . , AJ ∈ R, and any B1, . . . , BJ ∈ R++,

min
j=1,...,J

{Aj

Bj
} ≦

∑J
j=1Aj∑J
j=1Bj

≦ max
j=1,...,J

{Aj

Bj
}.

Proof. See Appendix.

2.4 Fundamentally asymmetric equilibrium

Before going to the construction of tolerant equilibria, we review the fundamentally asymmetric equi-

librium of Fujiwara-Greve et al. (2015).

Definition 4 Let c0-strategy be a match-independent strategy12 as follows: in any period t = 1, 2, . . .

of a partnership and after any partnership history, play C and, after that, stay if and only if (C,C) is

observed in that period.13

Let d0-strategy be a match-independent strategy as follows: in any period t = 1, 2, . . . and after any

partnership history, play D and leave.14

The c0-strategy is similar to the C-trigger strategy in the ordinary repeated Prisoner’s Dilemma,

but leaving the partnership is the punishment. The d0-strategy is the most myopic strategy. The

d0-strategy constitutes a symmetric Nash equilibrium for any δ ∈ (0, 1)15, but the c0-strategy does

not. An interesting property of the VSRPD is that these two strategies can make a Nash equilibrium.

Definition 5 A stationary strategy distribution p ∈ P(S) in the matching pool is a Nash equilibrium

if, for all s ∈ supp(p) and all s′ ∈ S16,

v(s; p) ≧ v(s′; p). (3)
12To be precise, this is a class of strategies, because we allow any off-path action plan in the information sets which

are not reachable. The same caveat applies to other definitions of specific strategies.
13Formally, for any t = 1, 2, . . . and any h ∈ Ht, xc0,t(h) = C, yc0,t(h, (C,C)) = Stay, and yc0,t(h, (a, a

′)) = Leave for
any (a, a′) ̸= (C,C).

14Formally, for any t = 1, 2, . . . and any h ∈ Ht, xd0,t(h) = D, yd0,t(h, (a, a
′)) = Leave for any (a, a′) ∈ {C,D}2.

15See Greve-Okuno Section 2.3, where it is called the d̃-strategy.
16Although we did not explicitly derive v(s′; p) for each private strategy s′ ∈ S, it is possible to compute the

continuation payoffs of all relevant one-step deviations, which are not restricted to be match-independent ones.
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Figure 2: Locally stable c0-d0 equilibrium

Lemma 3 (Fujiwara-Greve and Okuno-Fujiwara (2012), Fujiwara-Greve et al. (2015) and Izquierdo

et al. (2014)) There exists δc0d0 ∈ (0, 1) such that δ > δc0d0 if and only if there is a unique17 α(δ) ∈

(0, 1), such that the bimorphic distribution pc0d0(δ) = α(δ) · c0 + {1− α(δ)} · d0 is a Nash equilibrium

with the following “local stability” property: for each s ∈ {c0, d0}, there exists ϵ̄ ∈ (0, 1) such that, for

any ϵ ∈ (0, ϵ̄),

v(s′; (1− ϵ)p+ ϵs) > v(s; (1− ϵ)p+ ϵs),

where s′ ̸= s is the other strategy in {c0, d0}.

Figure 2 illustrates the intuition behind the payoff-equivalence of the c0- and the d0-strategy for

sufficiently large δ, and the local stability. For notational convenience, for each z ∈ {c0, d0} and any

α ∈ [0, 1], denote

U0(z;α) := U(z;α · c0 + (1− α)d0);

L0(z;α) := L(z;α · c0 + (1− α)d0);

v0(z;α) :=
U0(z;α)

L0(z;α)
= v(z;α · c0 + (1− α)d0).

17The other payoff-equivalent ratio of the c0- and the d0-strategy does not make the bimorphic distribution locally
stable.
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Explicitly, the average payoff of the c0-strategy is

v0(c0;α) =
α · U(c0, c0) + (1− α)U(c0, d0)

α · L(c0, c0) + (1− α)L(c0, d0)
=

α · c
1−δ2

+ (1− α)ℓ

α · 1
1−δ2

+ (1− α)
. (4)

Hence it is monotone increasing and concave in α. By contrast, the average payoff of the d0-strategy

is linear in α:

v0(d0;α) =
α · U(d0, c0) + (1− α)U(d0, d0)

α · L(d0, c0) + (1− α)L(d0, d0)
= α · g + (1− α)d. (5)

The concavity of v0(c0;α) is due to the voluntary nature of partnerships. As the survival rate δ

increases, the average payoff of the c0-strategy increases for any α, because c0-pairs last longer. Hence,

the average payoff function of the c0-strategy becomes more concave as δ increases. For sufficiently

high δ’s, the average payoff functions of the two strategies have two intersections and the one with

the larger share of the c0-strategy is locally stable. Let us call this share α(δ) the C-D ratio.

Payoff equivalence of the c0- and the d0-strategy implies that they constitute a Nash equilibrium,

by the following Lemma shown in Fujiwara-Greve et al. (2015). (This lemma will be useful later.)

Lemma 4 (Lemma 5 of Fujiwara-Greve et al. (2015)) Fix an arbitrary δ ∈ (δc0d0 , 1) and let vM :=

v0(c0;α(δ)) = v0(d0;α(δ)). The common payoff vM satisfies the Best Reply Condition in Greve-Okuno

with the strict inequality:

g + δ
vM

1− δ
<

c

1− δ2
+

δ(1− δ)

1− δ2
· vM

1− δ
. (6)

The LHS of (6) is the continuation payoff of a one-step deviation from the c0-strategy to play

D when it is certain that the partner also has the c0-strategy (i.e., in t ≧ 2 and after h with only

(C,C) has been observed), and the RHS is the continuation payoff of the c0-strategy, with random

death of the partner included. It can be shown that other one-step deviations from either the c0- or

d0-strategy after some partnership history are not beneficial, either. Therefore, for each δ ∈ (δc0d0 , 1),

the bimorphic distribution pc0d0(δ) = α(δ) · c0 + {1− α(δ)} · d0 is a Nash equilibrium.
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3 Tolerant Equilibria

3.1 Example: One-period tolerant equilibria

To give an intuition of our main result, in this subsection we explicitly construct a class of Nash

equilibria in which some players do not end a partnership at the end of t = 1 regardless of its history

(corresponding to the observation (i) in Introduction) and, if (C,C) is established, all players stay

and play C again (corresponding to the observation (ii)). Intuitively, in the first period of a new

match, players “take a look” at each other and not fully committed to behave cooperatively like the

c0-strategy or myopically like the d0-strategy. While “taking a look”, players can differ in the initial

action, and that is tolerated.

Definition 6 For any (initial) action X ∈ {C,D} and any strategy z ∈ {c0, d0}, the 1-period tolerant

strategy, denoted Xz, is a match-independent strategy such that

if t = 1 (Tolerant phase): play X and stay for any observation;

if t = 2 (Commitment phase): play the c0-strategy as the continuation strategy if (C,C) was observed

in t = 1, and play the z-strategy otherwise.

Specifically, there are four 1-period tolerant strategies Cc0 , Cd0 , Dc0 andDd0 . Only the Cd0-strategy

has two possible continuation strategies in t = 2, depending on whether the t = 1 outcome was (C,C)

or (C,D) (the first coordinate is the relevant player’s action). The c0- and the d0-strategy can be also

interpreted as degenerate 0-period tolerant strategies.

Fix an arbitrary δ ∈ (δc0d0 , 1) and consider a class of strategy combinations of the form

p̄1 = α(δ)[β · c0 + (1− β){α(δ) · Cc0 + (1− α(δ))Cd0}]

+ (1− α(δ))[γ · d0 + (1− γ){α(δ) ·Dc0 + (1− α(δ))Dd0}], ∃β, γ ∈ [0, 1]. (7)

Equivalently, we can write (7) as follows: all of the relative ratios between C-start strategies (c0, Cc0 , Cd0)

and D-start strategies (d0, Dc0 , Dd0), between Cc0 and Cd0 , and between Dc0 and Dd0 are the C-D

ratio, i.e., (with notational simplification such that p(s, s′, . . . , ) := p({s, s′, . . .}))

p̄1(c0, Cc0 , Cc0) = α(δ), ∀X ∈ {C,D}, p̄1(Xc0 , Xd0) > 0 ⇒ p̄1(Xc0)

p̄1(Xc0 , Xd0)
= α(δ). (8)

14



you \ partner c0 Cc0 Cd0 d0 Dc0 Dd0

C-start (α(δ)) D-start (1− α(δ))

α(δ) : 1− α(δ) α(δ) : 1− α(δ)

c0 c, c, . . . c, c, . . . c, c, . . . ℓ ℓ ℓ

Cc0 c, c, . . . c, c, . . . c, c, . . . ℓ ℓ, c, c, . . . ℓ, ℓ

Cd0 c, c, . . . c, c, . . . c, c, . . . ℓ ℓ, g ℓ, d

d0 g g g d d d

Dc0 g g, c, c, . . . g, ℓ d d, c, c, . . . d, ℓ

Dd0 g g, g g, d d d, g d, d

Table 3: Within-partnership payoff sequences in p̄1

There is freedom regarding whether p̄1(Xc0 , Xd0) > 0 or not, for each X ∈ {C,D}, corresponding to

whether β, γ < 1 or not. Therefore, this class includes the two-strategy equilibrium of pc0d0(δ) and

distributions with three to six strategies in the support. Table 3 shows the payoff sequences of all

possible partnerships and the relative ratio structure, which helps to understand the payoff equivalence

of all constituent strategies in p̄1.

Proposition 1 For any δ ∈ (δc0d0 , 1) and any β, γ ∈ [0, 1], p̄1 defined by (7) or (8) is a Nash

equilibrium and is payoff-equivalent to pc0d0(δ).

Proof of Proposition 1. Fix an arbitrary δ ∈ (δc0d0 , 1) and arbitrary β, γ ∈ [0, 1].

Step 1: v(c0; p̄1) = v(d0; p̄1).

Proof of Step 1: From Table 3,

v(c0; p̄1) =
p̄1(c0, Cc0 , Cd0)

c
1−δ2

+ p̄1(d0, Dc0 , Dd0)ℓ

p̄1(c0, Cc0 , Cd0)
1

1−δ2
+ p̄1(d0, Dc0 , Dd0) · 1

=
α(δ) · c

1−δ2
+ (1− α(δ))ℓ

α(δ) · 1
1−δ2

+ (1− α(δ))
= v0(c0;α(δ));

v(d0; p̄1) =
p̄1(c0, Cc0 , Cd0) · g + p̄1(d0, Dc0 , Dd0) · d
p̄1(c0, Cc0 , Cd0) · 1 + p̄1(d0, Dc0 , Dd0) · 1

= α(δ) · g + (1− α(δ))d = v0(d0;α(δ)).

That is, the average payoff of the c0-strategy (resp. d0-strategy) under p̄1 is the same as the one under

the fundamentally asymmetric equilibrium pc0d0(δ). By the definition of the C-D ratio in Lemma 3,

v(c0; p̄1) = v0(c0;α(δ)) = v0(d0;α(δ)) = v(d0; p̄1). □

Step 2: For each s ∈ {Cc0 , Cd0}, v(s; p̄1) = v(c0; p̄1).
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Proof of Step 2: From Table 3,

U(Cc0 ; p̄1)
(
=

∑
s∈supp(p̄1)

p̄1(s)U(Cc0 , s)
)

= p̄1(c0, Cc0 , Cd0)
c

1− δ2
+ p̄1(d0, Dc0 , Dd0)ℓ+ δ2p̄1(Dc0)

c

1− δ2
+ δ2p̄1(Dd0)ℓ

= α(δ)
c

1− δ2
+ {1− α(δ)}ℓ

+ δ2p̄1(Dc0 , Dd0)[
p̄1(Dc0)

p̄1(Dc0 , Dd0)
· c

1− δ2
+
(
1− p̄1(Dc0)

p̄1(Dc0 , Dd0)

)
ℓ]

= U0(c0;α(δ)) + δ2p̄1(Dc0 , Dd0) · U0

(
c0;

p̄1(Dc0)

p̄1(Dc0 , Dd0)

)
.

Hence

∆U(Cc0 , c0; p̄1) = U(Cc0 ; p̄1)− U(c0; p̄1) = δ2p̄1(Dc0 , Dd0) · U0

(
c0;

p̄1(Dc0)

p̄1(Dc0 , Dd0)

)
.

That is, the payoff difference between Cc0 and c0 is the continuation payoff in the second period

of a partnership in which (C,C) is not established in the first period, or with the partners using a

Dz-strategy for some z ∈ {c0, d0}. Similarly,

L(Cc0 ; p̄1) = α(δ)
1

1− δ2
+ {1− α(δ)} · 1 + δ2p̄1(Dc0) ·

1

1− δ2
+ δ2p̄1(Dd0) · 1

= L0(c0;α(δ)) + δ2p̄1(Dc0 , Dd0) · L0

(
c0;

p̄1(Dc0)

p̄1(Dc0 , Dd0)

)
,

⇒ ∆L(Cc0 , c0; p̄1) = δ2p̄1(Dc0 , Dd0) · L0

(
c0;

p̄1(Dc0)

p̄1(Dc0 , Dd0)

)
.

If p̄1(Dc0 , Dd0) = 0, then ∆U(Cc0 , c0; p̄1) = 0 and ∆L(Cc0 , c0; p̄1) = 0, so that v(Cc0 ; p̄1) = v(c0; p̄1)

holds. If p̄1(Dc0 , Dd0) > 0, from (7) or (8),

p̄1(Dc0)

p̄1(Dc0 , Dd0)
= α(δ)

so that the average payoff difference between the Cc0-strategy and the c0-strategy is

∆U(Cc0 , c0; p̄1)

∆L(Cc0 , c0; p̄1)
=

U0

(
c0;

p̄1(Dc0 )

p̄1(Dc0 ,Dd0
)

)
L0

(
c0;

p̄1(Dc0 )

p̄1(Dc0 ,Dd0
)

) = v0

(
c0;

p̄1(Dc0)

p̄1(Dc0 , Dd0)

)
= v0(c0;α(δ)).

This means that the extra continuation average payoff that the Cc0-strategy gets by its tolerance is

the same as the average payoff of going back to the matching pool. By Lemma 1 (i), we have

v(Cc0 ; p̄1) = v(c0; p̄1).
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Next, consider Cd0-strategy. Again, from Table 3,

U(Cd0 ; p̄1) = U0(c0;α(δ)) + δ2p̄1(Dc0 , Dd0) · U0

(
d0;

p̄1(Dc0)

p̄1(Dc0 , Dd0)

)
;

L(Cd0 ; p̄1) = L0(c0;α(δ)) + δ2p̄1(Dc0 , Dd0)L0

(
d0;

p̄1(Dc0)

p̄1(Dc0 , Dd0)

)
.

The payoff difference between Cd0 and c0 is the continuation payoff difference after histories in which

(C,C) has not been established, or with the partners using a Dz-strategy for some z ∈ {c0, d0}. If

p̄1(Dc0 , Dd0) = 0, then v(Cd0 ; p̄1) = v(c0; p̄1) holds. Otherwise,

∆U(Cd0 , c0; p̄1)

∆L(Cd0 , c0; p̄1)
= v0

(
d0;

p̄1(Dc0)

p̄1(Dc0 , Dd0)

)
= v0(c0;α(δ)).

By Lemma 1 (i), we have v(Cd0 ; p̄1) = v(c0; p̄1). □

Step 3: For each s ∈ {Dc0 , Dd0}, v(s; p̄1) = v(d0; p̄1).

Proof of Step 3: Analogous to the proof of Step 2.

Therefore, all strategies in supp(p̄1) are payoff equivalent to one another and to the fundamentally

asymmetric equilibrium pc0d0(δ).

Step 4: Consider any (on-path) partnership history such that the previous action combination was

(C,C). A one-step deviation from any strategy in supp(p̄1) involves either (Stay, D) or Leave. None

of these gets a higher continuation payoff than that of the equilibrium strategies.

Proof of Step 4: Let v∗ be the common average payoff of the equilibrium strategies starting in the

matching pool;

v∗ = v(s; p̄1), ∀s ∈ supp(p̄1).

Hence V (s; p̄1) = v∗/(1−δ). The assumption that (C,C) is observed implies that the future play path

of this partnership must be (Stay, Stay), (C,C), (Stay, Stay), (C,C), . . . as long as both partners live

(with probability δ2 each period). However, with probability δ(1 − δ), a player survives the partner

and goes back to the matching pool in the next period. Hence the (non-averaged) continuation payoff

of any of the equilibrium strategies (measured at the end of a period right after the observation of
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(C,C) in the Prisoner’s Dilemma) is

δ2[
c

1− δ2
+ {δ(1− δ) + δ3(1− δ) + · · · } · v∗

1− δ
] + δ(1− δ)

v∗

1− δ

=δ2[
c

1− δ2
+

δ(1− δ)

1− δ2
· v∗

1− δ
] + δ(1− δ)

v∗

1− δ
. (9)

By contrast, any one-step deviation to (Stay, D) gives g in the next period (if the partnership contin-

ues), but the match is terminated by the partner (who follows some strategy in supp(p̄1)). Hence the

continuation payoff of such a one-step deviation strategy is

δ2[g + δ · v∗

1− δ
] + δ(1− δ)

v∗

1− δ
,

and this is strictly less than (9) by Lemma 4.

Any one-step deviation to leave after (C,C) but conforms to an equilibrium strategy s gives the

(expected) continuation payoff of δV (s; p̄T ) = δ · v∗

1−δ . Since v∗ = v0(c0;α(δ)) < g,

δ · v∗

1− δ
< δ2[g + δ · v∗

1− δ
] + δ(1− δ)

v∗

1− δ
.

Hence this kind of one-step deviation is worse than (9) as well. □

Notice that after an action profile (a, a′) ̸= (C,C) in the first period of a match, all of Leave, (Stay,

C) and (Stay, D) are on-path actions. Therefore, it remains to consider (a, a′) ̸= (C,C) in the second

period of a match.

Step 5: Consider any on-path partnership history such that the second period action combination

was (C,D), (D,C), or (D,D). A one-step deviation from some strategy in supp(p̄1) is either (Stay,

C) or (Stay, D). However, the partner (who follows some strategy in supp(p̄1)) terminates the match

after (a, a′) ̸= (C,C), and hence these deviations all result in the same continuation payoff δ · v∗

1−δ

which is also the continuation payoff of the equilibrium strategies.

This completes the proof of Proposition 1. Q.E.D.

Intuitively, the construction of one-period tolerant equilibria is by the internalization of the fun-

damentally asymmetric equilibrium, pc0d0(δ), when its play path leads them to the brink of dissolving
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c0-d0 equilibrium paths

(C,C) (C,C) . . .

(C,D) end

(D,D) end

1-period tolerant equilibrium paths

(C,C) (C,C) . . .

(C,D)

(C,C) (C,C) . . .

(C,D)

(D,D)

end

(D,D) (C,D)

(C,C) (C,C) . . .

(D,D)

end

Figure 3: Internalization of the matching pool distribution

(see Figure 3). Consider the moment when a player is about to leave a partnership in the pc0d0(δ)-

equilibrium. If the probability distribution over the possible continuation strategies of the current

opponent is the same as the pc0d0(δ)-distribution, then a player is indifferent between staying and

going back to the matching pool.18 Moreover, in this case, a player can play either the c0-strategy or

the d0-strategy as the continuation strategy as well. Figure 3 illustrates that these strategies generate

all two-period action combination sequences consistent with the experimental observation (ii) that

(C,C) implies (Stay, Stay) and (C,C). The next corollary is straightforward.

Corollary 1 (Behavioral diversity for two periods) Let

A2
co := {[(a1, a′1), (a2, a′2)] ∈ {C,D}2 × {C,D}2 | (a1, a′1) = (C,C) ⇒ (a2, a

′
2) = (C,C)}

be the set of two-period “conditionally cooperative” PD action combination sequences. For any δ ∈

(δc0d0 , 1), any p̄1(δ) satisfying (7) with some β, γ ∈ (0, 1) generates all action combination sequences

in A2
co with a positive probability.

18This part of the logic is similar to the construction of the Co-De-indifferent equilibrium by Lei et al. (2018). However
our working paper (Fujiwara-Greve and Okuno-Fujiwara, 2016) precedes their work. Moreover, we allow any length of
memory, and therefore we are able to capture behavioral diversity.
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3.2 General tolerant equilibria

The construction of the class of 1-period tolerant strategies can be generalized by prolonging the initial

tolerant phase with a planned action sequence (see also Figure 5 in Section 3.5).

Definition 7 For any k = 0, 1, 2, . . ., any k-period sequence19 X = (X1, X2, . . . , Xk) ∈ {C,D}k, and

any z ∈ {c0, d0}, the k-period tolerant strategy, denoted Xz, is a match-independent strategy such

that, for any period t = 1, 2, . . . in a partnership,

if t ≦ k (Tolerant phase): when (C,C) is observed in the previous period20, play the c0-strategy as

the continuation strategy, and otherwise play Xt ∈ {C,D} and stay for any observation;

if t = k+1 (Commitment phase): when (C,C) is observed in the previous period, play the c0-strategy

as the continuation strategy, and otherwise play the z-strategy as the continuation strategy.

This class includes the Xz-strategy with X =

k times︷ ︸︸ ︷
D · · ·D and z = c0 (we write this strategy as Dk

c0),

which is a tolerant version of the k-period trust-building strategy in Greve-Okuno.

The set of k-period tolerant strategies is denoted by

S̃k = {Xz ∈ S | X ∈ {C,D}k, z ∈ {c0, d0}}.

For each k = 0, 1, 2, . . ., the set of all tolerant strategies with k-period or longer tolerant phase is

denoted by S̃∞
k := ∪∞

j=kS̃j .

For notational convenience, define the set of all “C-start” and all “D-start” tolerant strategies:

C+ := {Xz ∈ S̃∞
0 | X1 = C}

D+ := {Xz ∈ S̃∞
0 | X1 = D}.

For example, C+ ∩ S̃1
0 = {c0, Cc0 , Cd0}. Similarly, for each for each k = 0, 1, 2, . . . and any k-period

action sequence X ∈ {C,D}k, define the set of “XC-start” tolerant strategies and “XD-start” tolerant

19As a convention, let {C,D}0 = ∅. Hence the c0- and the d0-strategies are included as degenerate tolerant strategies.
20If t = 1, assume that this is not the case.
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strategies21:

XC+ := {X′
s ∈ S̃∞

k | X′ = X, s ∈ C+}

XD+ := {X′
s ∈ S̃∞

k | X′ = X, s ∈ D+}.

(For k = 0, we use the convention ∅C+ = C+ and ∅D+ = D+.) For example, CC+ ⊂ S̃∞
1 and

CC+ ∩ S̃2
1 = {Cc0 , CCc0 , CCd0}.

Note that we can decompose the set XC+ and XD+ indefinitely. For example,

XC+ = {Xc0} ∪XCC+ ∪XCD+

= {Xc0} ∪ [{XCc0} ∪XCCC+ ∪XCCD+] ∪ [{XCd0} ∪XCDC+ ∪XCDD+]

and so on. This means that if the support of some p does not contain XC+, then it does not contain

any of XCC+,XCD+, . . . which are the set of longer tolerant strategies with the same initial action

sequence (X1, . . . , Xk, C) (when X = (X1, . . . , Xk)).

Proposition 2 (Tolerant Equilibria) Fix any δ ∈ (δc0d0 , 1). For each T = 0, 1, 2, . . ., define

PT (δ) :=
{
p̄T ∈ P(S̃T

0 ) | ∀k = 0, 1, 2, . . . , T, ∀X ∈ {C,D}k,

p̄T
(
XC+ ∪XD+

)
> 0 ⇒

p̄T
(
XC+

)
p̄T

(
XC+ ∪XD+

) = α(δ)
}
. (10)

Then, any distribution in p̄T ∈ PT (δ) is a Nash equilibrium and is payoff-equivalent to the bimorphic

pc0d0(δ)-equilibrium.

Proof. See Appendix.

The strategy distributions in PT (δ) have a “branching” structure such that if a strategy in XC+

or XD+ exists in the support, then the relative ratio of these groups must be the C-D ratio (so that

the other group also exists in the support), but it is possible that, for some X, none of XC+-start and

XD+-start tolerant strategies exist in the support.

21Given an action plan X ∈ {C,D}k and a tolerant strategy s = Yz, the “concatenated” strategy Xs is also a tolerant
strategy of the form XYz.
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3.3 Behavioral diversity

If a strategy distribution in PT (δ) has the full-support in the sense that all of 0 to T -period tolerant

strategies exist in its support, it generates all Prisoner’s Dilemma action profile sequences for T + 1

periods which are consistent with the experimental observation (ii) that (C,C) implies (Stay, Stay)

and (C,C). To state this formally, for each T = 0, 1, 2, . . ., define the set of “full-support” tolerant

equilibria:

P ◦
T (δ) :=

{
p̄T ∈ PT (δ) | ∀k = 0, 1, 2, . . . , T, ∀X ∈ {C,D}k, p̄T (Xz) > 0, ∀z ∈ {c0, d0}

}
.

For any n = 1, 2, . . ., let a class of n-period action profile sequences with the property that the

establishment of (C,C) implies long-term cooperation:

An
co :=

{
((a1, a

′
1), . . . , (an, a

′
n)) ∈ [{C,D}2]n | ∀m = 1, 2, . . . , n− 1,

(am, a′m) = (C,C) ⇒ (am+1, a
′
m+1) = (C,C)

}
.

Corollary 2 (Behavioral Diversity) For any δ ∈ (δc0d0 , 1) and any T = 1, 2, . . ., each distribution in

p̄T ∈ P ◦
T (δ) generates all T+1-period action combination sequences in AT+1

co with a positive probability.

The proof is straightforward from the definition of the tolerant strategies and the requirement that

any k-period tolerant strategy for k = 0, 1, . . . , T must exist in p̄T (recall also Figure 3).

3.4 Efficiency

By construction, all equilibria in PT (δ) for all T = 0, 1, 2, . . . are payoff-equivalent to one another,

for a given δ ∈ (δc0d0 , 1). Fujiwara-Greve et al. (2015) showed that when the “stake” (g − c) of the

Prisoner’s Dilemma is not too large, the fundamentally asymmetric equilibrium is more efficient than

any trust-building/gradual cooperation equilibrium.

Definition 8 For any k = 0, 1, 2, . . ., the k-period trust-building strategy, denoted ck, is a match-

independent strategy such that, for any period t = 1, 2, . . . in a partnership,
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if t ≦ k (Trust-building phase): play D and stay if and only if (D,D) is observed;

if t ≧ k + 1 (Cooperation phase): play C and stay if and only if (C,C) is observed.

Remark 1 (Proposition 4 of Fujiwara-Greve et al., 2015) For any (g, c, d, ℓ) such that g − c < (c −

d)2/(c − ℓ), there exists δ̂ ∈ [δc0d0 , 1) such that for any δ ∈ (δ̂, 1), any Nash equilibrium distribution

q ∈ P({c0, c1, c2, . . .}), and any s ∈ {c0, d0},

v(s; pc0d0(δ)) ≧ v(s′; q), ∀s′ ∈ supp(q),

and the strict inequality holds for any Nash equilibrium q ∈ P({c1, c2, . . .}) and any s′ ∈ supp(q).

The idea is that, under the small stake condition, occasional exploitation of c0-players by d0-

players is not so costly as compared to all players suffering from mutual defection at the beginning

of every match. Therefore, under the same payoff condition and δ’s, all tolerant equilibria are

more efficient than any trust-building equilibrium.

3.5 Evolutionary Stability

Since the model is a population game (Sandholm, 2010), it is desirable to investigate evolutionary

stability of the tolerant equilibria. However, the neutral stability concept in Greve-Okuno cannot be

satisfied by any tolerant equilibrium, just like the fundamentally asymmetric c0-d0 equilibrium does

not satisfy it. Greve-Okuno required that all equilibrium strategies must perform weakly better than

any pure-strategy mutant. To distinguish from a more standard way to compare the mean payoff of

strategy distributions (see Definition 12), we rename their stability concept as S-Neutral Stability22,

where S stands for symmetric/single-strategy mutants, and also make the set of possible mutants

explicit, which is S in this concept.

Definition 9 (Greve-Okuno) A stationary strategy distribution in the matching pool p∗ ∈ P(S)

satisfies S-Neutral Stability with respect to S (denoted S-NS(S)) if, for any s′ ∈ S, there exists ϵ ∈ (0, 1)

22Izquierdo et al. (2018) call this concept Fujiwara NSD.
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such that for any s ∈ supp(p∗) and any ϵ ∈ (0, ϵ),

v(s; (1− ϵ)p∗ + ϵ · s′) ≧ v(s′; (1− ϵ)p∗ + ϵ · s′). (11)

When there is on-path separation among the equilibrium strategies, there is a secret-handshake

strategy (Robson, 1990, Matsui, 1991) which imitates an equilibrium strategy until when the latter

chooses to leave, stay instead and cooperate afterwards. If such a secret-handshake strategy enters

the population with a positive measure, the imitated strategy performs strictly worse than the secret-

handshake mutants. Hence no tolerant equilibrium satisfies S-NS(S), or even if we restrict the set of

symmetric-strategy mutants to S̃∞
0 .

Remark 2 For any δ ∈ (δc0d0 , 1), any T = 0, 1, 2, . . ., and any p̄T ∈ PT (δ), p̄T does not satisfy

S-NS(S).

Proof of Remark 2. (Straightforward and can be omitted.) Fix an arbitrary δ ∈ (δc0d0 , 1), any

T = 0, 1, 2, . . . and any p̄T ∈ PT (δ). Among the equilibrium pure strategies, consider the most-

tolerant, always-D strategy s = Dk
d0
. That is, take s ∈ S̃k ∩ supp(p̄T ) such that there is no ŝ = Dm

d0
∈

S̃m ∩ supp(p̄T ) with m > k. (For T = 0, s must be the d0-strategy. For T = 1, s is either d0 or Dd0

depending on the support of p̄1.) Then there exists a “secret-handshake” mutant strategy s′ = Dk+1
c0

which imitates s but stays in the partnership in k + 1-th period and starts cooperating in k + 2-th

period. This strategy has the same play path as that of the s-strategy against any equilibrium strategy,

and can establish long-term cooperation with another s′-strategy. Therefore, for any ϵ ∈ (0, 1),

∆U(s′, s; (1− ϵ)p̄T + ϵ · s′)
∆L(s′, s; (1− ϵ)p̄T + ϵ · s′)

= c > v(s; (1− ϵ)p̄T + ϵ · s′),

and ∆L(s′, s; (1− ϵ)p̄T + ϵ · s′) > 0. By Lemma 1 (i), for any ϵ ∈ (0, 1),

v(s; (1− ϵ)p̄T + ϵ · s′) < v(s′; (1− ϵ)p̄T + ϵ · s′). Q.E.D.

In other words, the tolerant equilibria are not robust against coordinated mutants using a secret-

handshake strategy, which exists among the tolerant strategies.
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The S-NS(S) concept by Greve-Okuno was defined mostly for the monomorphic distribution analy-

sis where both the equilibrium-strategy distribution p∗ and the potential mutant-strategy distributions

consist of a single pure-strategy. However, if p∗ has many pure strategies in the support, after mutants

perturb the matching-pool strategy distribution, incumbent strategies differ in the post-entry payoffs.

Hence, requiring each equilibrium strategy to beat all mutants is very strong. A more standard mea-

surement of the fitness/performance of a strategy distribution is to look at the mean payoff over the

relevant strategy distribution.

Also, we should include polymorphic-strategy distributions as potential mutant distributions. How-

ever, it is not fruitful to consider any distribution in P(S) from Remark 2. Thus we define a stability

concept with respect to a set of potential (polymorphic) mutant-strategy distributions, and inves-

tigate a “sufficient” set of mutant distributions which cannot de-stabilize the tolerant equilibria. To

avoid measure theoretic complications which do not give us new economic insights, we restrict our at-

tention to countable support distributions. Let Q ⊂ P(S) be the set of (match-independent) strategy

distributions with a countable support.

Definition 10 Given M ⊂ Q, a stationary strategy distribution in the matching pool p∗ ∈ Q is Mean

Stable with respect to the mutants from M (denoted MS(M)) if, for any q ∈ M , there exists ϵ ∈ (0, 1)

such that for any ϵ ∈ (0, ϵ),

∑
s∈supp(p∗)

p∗(s)v(s; (1− ϵ)p∗ + ϵ · q) >
∑

s′∈supp(q)

q(s′)v(s′; (1− ϵ)p∗ + ϵ · q). (12)

Since we need to restrict the potential mutant distribution set M , we might as well require the

strict inequality. Note that the larger the M is, the stronger the stability is. If (12) holds, some kind

of monotone/mean dynamic (see e.g., Samuelson, 1997 and Sandholm, 2010) should support that any

mutant strategy distribution will be expelled, when mutant distributions are generated within M .

If M = Q and (12) is the weak inequality, Definition 10 is the “matching-pool distribution” version

of the Izquierdo & van Veelen Neutrally Stable Distribution in Izquierdo et al. (2018). Note also that
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Figure 4: Feasible action sequences over two periods by tolerant strategies

for any p∗, q ∈ Q, the “strategy-wise” comparison of the average payoffs as in (11),

∀s′ ∈ supp(q), ∀s ∈ supp(p∗), v(s; (1− ϵ)p∗ + ϵ · s′) > v(s′; (1− ϵ)p∗ + ϵ · s′),

may not imply (12), because, when q is polymorphic,∑
s′∈supp(q)

q(s′)v(s′; (1− ϵ)p∗ + ϵ · q) ̸=
∑

s′∈supp(q)

q(s′)v(s′; (1− ϵ)p∗ + ϵ · s′).

This means that the Mean Stability is fundamentally different from the stability considered in Greve-

Okuno.

In order to establish a Mean Stability result of all tolerant equilibria, we focus on mutants using

only tolerant strategies as well. A justification for this focus is that the tolerant strategies generate

all relevant play paths in the society. By behavioral diversity (Corollary 2), the infeasible play paths

have the property [Stay and D] or Leave after observing (C,C) (see Figure 4). Any strategy which

generates such a play path is a one-step deviation strategy and thus is not a best response. In other

words, tolerant strategies are the candidates for equilibrium entrants.23

Another justification of our focus on the tolerant strategy mutants is that, among the tolerant

strategies, the explicit payoff comparison is possible. In general, it is very difficult to explicitly

23For a related concept, see Swinkels (1992).
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compare the average payoffs of two (extensive-form) strategies such as

v(s; p) =
U(s; p)

L(s; p)
=

∑
s′∈supp(p) p(s

′)U(s, s′)∑
s′∈supp(p) p(s

′)L(s, s′)
, v(ŝ; p) =

U(ŝ; p)

L(ŝ; p)
=

∑
s′∈supp(p) p(s

′)U(ŝ, s′)∑
s′∈supp(p) p(s

′)L(ŝ, s′)
,

because both the denominator and the numerator can be different, due to the endogenous lengths of

partnerships. By contrast, the structure of the tolerant strategies is so organized that for any pair of

tolerant strategies s and s∗ with the same initial action plan for some periods and s∗ has a shorter

tolerant phase than that of s (then we call that s∗ is an induced strategy of s),

v0(z; q) ≦
U(s; p)− U(s∗; p)

L(s; p)− L(s∗; p)
≦ v0(z

′; q′)

for some z, z′ ∈ {c0, d0} and some q, q′ ∈ [0, 1]. Then Lemma 1 can be invoked to compare v(s; p) and

v(s∗; p) explicitly. (See the proof of Lemma 5 below.)

Definition 11 For any k = 1, 2, . . . any k-period action sequence X = (X1, . . . , Xk) ∈ {C,D}k, any

z ∈ {c0, d0}, and any m = 0, 1, 2, . . . , k − 1, the induced m-period tolerant strategy of the (k-period

tolerant) Xz-strategy is an m-period tolerant strategy X′
xm+1

such that the planned action sequence

for initial m periods is the same, X′ = (X1, . . . , Xm), and the commitment continuation strategy in

m+ 1-th period of a match is

xm+1 =

{
c0 if Xm+1 = C

d0 if Xm+1 = D.

Figure 5 illustrates a k-period tolerant strategy and its induced (k− 1)-period tolerant strategy.24

They behave the same way for k-periods but the induced (k − 1)-period tolerant strategy commits

to one of the c0- or the d0-strategy in the k-th period, depending on Xk = C or D. In general, a

k-period tolerant strategy and its induced m-period tolerant strategy (where k > m) behave the same

way for (m+ 1)-period. This simplifies the average payoff comparison.

Next, we give an important lemma which shows External Stability25 (if mutant distributions

are within some set of tolerant strategies): for any tolerant strategy mutant s′, there is an equilibrium

24As in the case of Dz-strategies, those which do not choose C at some point can be vacuously illustrated as in Figure
5 as well.

25This property is similar to von Neumann-Morgenstern’s External Stability which is a part of their notion of Stable
Set (von Neumann and Morgenstern, 1944).
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Figure 5: k-period tolerant strategy and its induced (k − 1)-period tolerant strategy

strategy s∗ which performs strictly better than s′ does in the post-entry distribution. To show this,

we partition the mutant (tolerant) strategies using the induced-strategy structure. For each T =

0, 1, 2, . . ., and each (T -period tolerant) sT ∈ S̃T , define

S(sT ) := {s′ ∈ S̃∞
T+1 | sT is the induced T period tolerant strategy of s′}.

Then

S(sT ) ∩ S(ŝT ) = ∅, ∀sT ̸= ŝT ∈ S̃T , ∪sT∈S̃T
S(sT ) = S̃∞

T+1.

Lemma 5 (External Stability) For any δ ∈ (δc0d0 , 1), and each T = 0, 1, 2, . . ., define

MT (δ) :=
{
q ∈ P(S̃∞

0 ) | supp(q) ∩ S̃∞
T+1 ̸= ∅, sup

X∈{C,D}T+k, k=1,2,...

q
(
XC+∪XD+

)
>0

q
(
XC+

)
q
(
XC+ ∪XD+

) < α(δ)
}
.

Then for any δ ∈ (δc0d0 , 1) and any T = 1, 2, . . ., each full-support p̄T ∈ P ◦
T satisfies the following: for

any q ∈ MT (δ), there exists ϵT ∈ (0, 1) such that, for any ϵ ∈ (0, ϵT ) and any sT ∈ S̃T ,

∀s′ ∈ S(sT ) ∩ supp(q), v(sT ; (1− ϵ)p̄T + ϵ · q) > v(s′; (1− ϵ)p̄T + ϵ · q). (13)
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Proof. See Appendix.

Lemma 5 is in fact stronger than External Stability because we know that for any (mutant strategy)

s′ ∈ S̃∞
T+1, it is outperformed by its induced T -period tolerant strategy, which is in the support of p̄T .

The sufficient set of mutant strategies, MT (δ), can be interpreted as “‘dispersed distributions”

such that mutants do not concentrate heavily on some Xc0-strategy. MT (δ) requires only that tolerant

strategies whose tolerant phase last T +1 periods or longer emerge in a dispersed way. Since there

are infinitely many strategies even within the tolerant strategy class, unlike Kandori et al. (1993),

there is no guarantee that in the long-run, mutants can coordinate on a particular strategy. Instead,

it is natural that mutant strategy distributions have a wide support. (MT (δ) includes q’s with full-

support.)

MT (δ) is nearly the necessary and sufficient set for external stability. From Proposition 2, if the

relative ratio of mutant strategies is exactly the C-D ratio, the post-entry distribution becomes a new

Nash equilibrium. From Remark 2, if a mutant distribution concentrates on some secret-handshake

Xc0-strategy, they can invade a tolerant equilibrium.

The evolutionary stability result of all tolerant equilibria is as follows. To construct a non-empty

interior, we consider upper bounds to the tolerant phase in the society, m = T +1, T +2, . . .. For each

m < ∞, we can use the ordinary, finite-dimensional Euclidean space topology on P(S̃m
0 ).

Proposition 3 For any δ ∈ (δc0d0 , 1), any T = 0, 1, 2, . . ., any m = T + 1, T + 2, . . ., and any full

support p̄T ∈ P ◦
T , there exists M ⊂ MT (δ)∩P(S̃m

0 ) with a non-empty interior such that p̄T is MS(M).

Proof. See Appendix.

The idea of the proof is as follows. There exists (in fact many) q ∈ MT (δ)∩ int(P(S̃m
0 )) such that

∀k = 0, 1, . . . , T − 1, ∀ sk ∈ S̃k, q(sk) = p̄T (sk),

∀sT ∈ S̃T , q(sT ) +
∑

s′∈S(sT )

q(s′) = p̄T (sT ).
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By External Stability of Lemma 5, for sufficiently small ϵ’s, and each sT ∈ S̃T ,

∑
s′∈S(sT )∩supp(q)

q(s′)v(s′; (1− ϵ)p̄T + ϵ · q) + q(sT )v(sT ; (1− ϵ)p̄T + ϵ · q)

<
∑

s′∈S(sT )∩supp(q)

q(s′)v(sT ; (1− ϵ)p̄T + ϵ · q) + q(sT )v(sT ; (1− ϵ)p̄T + ϵ · q)

= [q(sT ) +
∑

s′∈S(sT )∩supp(q)

q(s′)] · v(sT ; (1− ϵ)p̄T + ϵ · q)

= p̄T (sT ) · v(sT ; (1− ϵ)p̄T + ϵ · q) from the definition of q.

Also by the definition of q, for any k = 0, 1, . . . , T − 1 and sk ∈ S̃k,

q(sk)v(sk; (1− ϵ)p̄T + ϵ · q) = p̄T (sk)v(sk; (1− ϵ)p̄T + ϵ · q).

Hence

∑
s′∈supp(q)

q(s′)v(s′; (1− ϵ)p̄T + ϵ · q)

=
T−1∑
k=0

∑
sk∈S̃k

q(sk)v(sk; (1− ϵ)p̄T + ϵ · q)

+
∑

sT∈S̃T

q(sT )v(sT ; (1− ϵ)p̄T + ϵ · q) +
∑

sT∈S̃T

∑
s′∈S(sT )∩supp(q)

q(s′)v(s′; (1− ϵ)p̄T + ϵ · q)

<

T−1∑
k=0

∑
sk∈S̃k

p̄T (sk)v(sk; (1− ϵ)p̄T + ϵ · q) +
∑

sT∈S̃T

p̄T (sT ) · v(sT ; (1− ϵ)p̄T + ϵ · q)

=
∑
s∈S̃T

0

p̄T (sT )v(sT ; (1− ϵ)p̄T + ϵ · q).

Since we constructed q in the interior of P(S̃m
0 ), we can find an open ball around it.

However, this is only an example of the existence of M for MS(M), and unfortunately we do not

have a result closer to the characterization of the sufficient set M for Mean Stability. The difficulty

lies in the non-linear average payoff structure and the vast variety of strategies in the VSRPD.

For the simplest case of T = 0, our companion paper Fujiwara-Greve and Okuno-Fujiwara (2019)

shows that in fact the set very similar to M0(δ) makes the fundamentally asymmetric equilibrium

Neutrally Stable, which is slightly weaker than Mean Stability.

30



Definition 12 Given M ⊂ Q, a stationary strategy distribution in the matching pool p∗ ∈ Q satisfies

Neutral Stability with respect to the mutants from M (denoted NS(M)) if, for any q ∈ M , there exists

ϵ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ),

∑
s∈supp(p∗)

p∗(s)v(s; (1− ϵ)p∗ + ϵ · q) ≧
∑

s′∈supp(q)

q(s′)v(s′; (1− ϵ)p∗ + ϵ · q). (14)

Remark 3 (Fujiwara-Greve and Okuno-Fujiwara (2019)) For any δ ∈ (δc0d0 , 1), the bimorphic Nash

equilibrium pc0d0(δ) = α(δ)c0 + {1− α(δ)}d0 satisfies NS(M0(δ)), where

M0(δ) :=
{
q ∈ P(S̃∞

0 ) | sup
X∈{C,D}k, k=1,2,...

q
(
XC+∪XD+

)
>0

q
(
XC+

)
q
(
XC+ ∪XD+

) < α(δ)
}
.

To add, consider another refinement concept, belief-free (e.g., Ely et al., 2005). In any equilibrium

consisting of match-independent strategies, beliefs regarding the past (unobserved) behavior of a new

opponent does not matter. Hence, our tolerant equilibria as well as all existing equilibria in the

literature, in particular the symmetric trust-building equilibria in Greve-Okuno, are belief-free. This

is a contrasting result to Heller (2017). He showed that in ordinary repeated games, only the trivial

equilibria of the repetition of the one-shot Nash equilibrium may satisfy evolutionary stability or

neutral stability. The difference between our result and Heller’s comes from the special “imperfect

monitoring” structure of our model: no information at the time of a new match and perfect monitoring

during a partnership.

3.6 Stability comparison with other equilibria

There are numerous other Nash equilibria in the VSRPD. One salient class is strategy distributions

consisting of “always-D”-strategies. As shown in the companion paper, Fujiwara-Greve and Okuno-

Fujiwara (2019), the monomorphic d0-distribution, which is a Nash equilibrium at any δ ∈ (0, 1), does

not satisfy External Stability nor NS(M0(δ)). We show that any distribution consisting of tolerant

but always-D-strategies is also less stable than any tolerant equilibrium.
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Proposition 4 Take any Nash equilibrium p such that supp(p) ⊂ {Dk
d0

| k ∈ {0, 1, . . . ,K}} for some

K < ∞.

(i) For any δ ∈ (0, 1), p does not satisfy S-NS(S).

(ii) Let τ(p) = max{k : Dk
d0

∈ supp(p)} be the maximal duration of the tolerant phase in the sup-

port. For any δ ∈ (δc0d0 , 1), p does not satisfy External Stability with respect to MT (δ) for any

T = 0, 1, 2, . . . , τ .

Proof. See Appendix.

For Proposition 4 (i), we show that there is a secret-handshake strategy (which tolerate one period

longer than all existing players and cooperate if the partnership continues) that earns a higher post-

entry payoff than the most tolerant Dk
d0
, so the original Nash equilibrium is not a S-NS(S). For (ii),

we show that even if we restrict mutant distributions to be “dispersed”, there is a bimorphic mutant

distribution q = α · Dτ+1
c0 + (1 − α)Dτ+1

d0
such that q ∈ MT (δ) for any T = 0, 1, 2, . . . , τ . Using

the Dτ+1
c0 -strategy as a “spring board”26, the Dτ+1

d0
-strategy outperforms all constituent strategies in

supp(p).

Let us turn to the trust-building equilibria in Greve-Okuno, which satisfy S-NS(S) for sufficiently

long initial trust-building phase.

Definition 13 For each T = 1, 2, . . ., let the cT -strategy be a strategy such that

t ≦ T (Trust-building phase): Play D and keep if and only if (D,D) is observed in that period;

t ≧ T + 1 (Cooperation phase): Play C and keep if and only if (C,C) is observed in that period.

Proposition 5 There exists δ(∞) ∈ (0, 1) such that for any δ ∈ (δ(∞), 1), there exists τ(δ) such that

the monomorphic distribution of cT -strategy satisfies S-NS(S) for any T > τ(δ), but does not satisfy

External Stability with respect to Mt(δ) for any t = 0, 1, 2, . . . , T − 1, i.e., there exists q ∈ Mt(δ) and

s ∈ supp(q) such that

v(s; (1− ϵ)cT + ϵ · q) > v(cT ; (1− ϵ)cT + ϵ · q), ∀ϵ ∈ (0, 1).
26This argument is different from the indirect invasion in van Veelen (2012). The Dτ+1

d0
-mutants need to bring some

Dτ+1
c0 -mutants in order to beat the incumbents.
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Proof. See Appendix. The bounds δ(∞) and τ(δ) are constructed in Greve-Okuno.

The “intolerance” in the trust-building phase makes the monomorphic cT -distribution vulnerable to

some bimorphic mutant distributions containing the tolerant DT
c0-strategy and an earlier cooperator

DT−1Cc0-strategy. Although the cT - and DT
c0-strategy have the same play path when they meet among

themselves, the tolerant mutant DT
c0-strategy does not end a partnership with the earlier cooperator

DT−1Cc0-strategy, while the intolerant cT -player does, missing the opportunity to establish a long-

term cooperative relationship. Like the logic of Proposition 4 (ii), the tolerant DT
c0-strategy can

use the earlier cooperator DT−1Cc0-strategy as the spring board to outperform the incumbent cT -

strategy. The stability of the monomorphic cT -strategy hinged on the restriction of monomorphic

mutants. (Proposition 5 implies that the cT -equilibrium does not satisfy S-NS(Mt(δ)) for any t =

0, 1, 2, . . . , T − 1, either.)

A tolerant monomorphic trust-building equilibrium DT
c0 for sufficiently long T is not so stable,

either. It is vulnerable to indirect invasion (van Veelen, 2012) because the intolerant cT -strategy

can emerge in the population (since they have the same play path among themselves) and then get

defeated by the mutant distributions in Proposition 5.

4 Concluding Remarks

We discuss how the logic of this paper may extend to other stage games with voluntary separation,

how our result can be interpreted in the network context, and future research directions.

The construction of the fundamentally asymmetric equilibrium is thanks to the Prisoner’s Dilemma

payoff structure (non-myopic action combination is beneficial if it is repeated) and the voluntary nature

of the partnerships (cooperators can avoid exploitation). By contrast, the extension to the tolerant

equilibria is due to the recursive structure of the dynamic game. With the stationary birth/death

process and a fixed stage game, we can internalize the matching pool distribution within partnerships.

Hence, for any stage game, it is possible to construct tolerant equilibria based on equilibria with on-

path separation. However, the most striking result is for the Prisoner’s Dilemma. (It is also possible
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to construct tolerant versions of polymorphic trust-building equilibria in the VSRPD, for example

adding initial tolerant phase to an equilibrium consisting of some cT - and cT+1-strategy. However

such tolerant trust-building equilibria do not exhibit as diverse behavior patterns as those based on

the c0-d0 equilibrium, because in the former, (D,D) (as well as (C,C)) leads to mutual cooperation.)

In the context of social games, the VSRPD approach is a first step towards a unified analysis

of network formation and within-network strategic behavior. There is a large literature of network

formation (see for example, Jackson, 2008), but the strategic behavior within a network and dynamic

change of the network are usually separately analyzed.27 We showed that a huge variety of pairwise

cooperative networks (betweenXc0-players) and non-networking d0-players
28 can co-exist in the society

over the long horizon. This also implies that it is not guaranteed that all agents in the society end up

in a (long-term) network (cf. Cho and Matsui, 2012).

There are many interesting future research directions. Although we motivated the VSRPD frame-

work by globalization, advancement of information technology should give some information about

newly matched opponents. Then an equilibrium must take into account the cost of such informa-

tion and the benefit of improved punishments. Note, however, that improved information may tempt

the society to aim for a personalized-punishment system to provide cooperation incentives. But

personalized-punishment strategies are not belief-free, and do not provide a “safety net” property of

partnership-independent equilibria like tolerant equilibria.

Another important extension is a two population model of firms and workers, to make a closed

model of efficiency wage theory (e.g., Okuno, 198129 and Shapiro and Stiglitz, 1984). If there is an

equilibrium in which a cooperative strategy (to work hard) and a myopic strategy (to shirk) co-exist

among workers, it would give a further rationale to equilibrium unemployment.

Appendix

27An exception is Immorlica et al. (2014).
28The exploiters, Xd0 -players, can be an intermediate type of short-term networking players.
29The English version is Okuno-Fujiwara (1987), but we cite the Japanese version to show that it precedes Shapiro

and Stiglitz (1984).
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Proof of Lemma 1. By definition,

v(s; p) > v(ŝ; p)

⇐⇒ U(s; p)

L(s; p)
>

U(s; p) + ∆U(ŝ, s; p)

L(s; p) + ∆L(ŝ, s; p)

⇐⇒ U(s; p) ·∆L(ŝ, s; p) > L(s; p) ·∆U(ŝ, s; p), (15)

because L(s; p) ≧ 1 and L(ŝ; p) = L(s; p) + ∆L(ŝ, s; p) ≧ 1 for any s, ŝ, p.

If ∆L(ŝ, s; p) > 0, then the inequality (15) is equivalent to

U(s; p)

L(s; p)
>

∆U(ŝ, s; p)

∆L(ŝ, s; p)
.

If ∆L(ŝ, s; p) < 0, then (15) is equivalent to

U(s; p)

L(s; p)
<

∆U(ŝ, s; p)

∆L(ŝ, s; p)
=

−∆U(ŝ, s; p)

−∆L(ŝ, s; p)
.

Q.E.D.

Proof of Lemma 2.

We show the “max” part by induction on J . The “min” part is analogous.

The statement clearly holds for J = 1. Suppose that the claim holds for J = n− 1.

Take any A1, . . . , An ∈ R and any B1, . . . , Bn ∈ R++.

Let Ai
Bi

:= maxj=1,2,...,n
Aj

Bj
. We want to show that∑n

j=1Aj∑n
j=1Bj

=
Ai +

∑
j∈{1,2,...,n}\{i}Aj

Bi +
∑

j∈{1,2,...,n}\{i}Bj
≦ Ai

Bi

which is equivalent to ∑
j∈{1,2,...,n}\{i}Aj∑
j∈{1,2,...,n}\{i}Bj

≦ Ai

Bi
.

(This equivalence uses the assumption that all Bj ’s are positive.) Since the claim holds for J = n− 1,∑
j∈{1,2,...,n}\{i}Aj∑
j∈{1,2,...,n}\{i}Bj

≦ max
j∈{1,2,...,n}\{i}

{Aj

Bj
}.

By the definition,

max
j∈{1,2,...,n}\{i}

{Aj

Bj
} ≦ max

j=1,...,n

Aj

Bj
=

Ai

Bi
.
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Therefore, ∑
j∈{1,2,...,n}\{i}Aj∑
j∈{1,2,...,n}\{i}Bj

≦ Ai

Bi
.

Q.E.D.

Before giving the proof of Proposition 2, recall the concept of induced tolerant strategies, which

makes payoff comparisons easy, and a lemma that gives the payoff difference between a tolerant

strategy and its induced less-tolerant strategy.

Lemma 6 For any k = 1, 2, . . ., any k-period tolerant strategy Xz ∈ S̃k, its induced (k − 1)-period

tolerant strategy X′
xk

∈ S̃k−1 and any p ∈ P(S̃∞
0 ), the total expected payoff difference is

∆U(Xz,X
′
xk
; p) = δ2k

∑
X̃∈{C,D}k

(Xt,X̃t )̸=(C,C) ∀t=1,...,k

[p(X̃C+)U(z, c0) + p(X̃D+)U(z, d0)]

Proof of Lemma 6. Fix an arbitrary k ∈ {1, 2, . . .}. For notational simplicity, let ŝ = Xz be a k-

period tolerant strategy and its induced (k−1)-period tolerant strategy be s∗ = X′
xk
. Fix an arbitrary

τ -period tolerant strategy s = X̃z̃ as the partner.

Step 1: If τ ≦ k − 1, then ŝ and s∗ have the same payoff sequence in the partnership with s:

∀τ ≦ k − 1, ∀ X̃z̃ ∈ S̃τ , U(ŝ, X̃z̃)− U(s∗, X̃z̃) = 0. (16)

Proof of Step 1: In the first period of the match with s, both ŝ and s∗ obtain the one-shot payoff

of u(X1, X̃1). If (X1, X̃1) = (C,C), then both ŝ and s∗ obtain the sequence of payoffs c, c, . . . as long

as the partners lives.

If (X1, X̃1) ̸= (C,C), both partners survive, and τ > 0, then in the second period of the match

with s = X̃z̃, both ŝ and s∗ obtain the same one-shot payoff of u(X2, X̃2). If (X2, X̃2) = (C,C), then

both ŝ and s∗ obtain the sequence of payoffs c, c, . . . as long as the partners live.

This is repeated until the τ -th period of the match as long as (C,C) is not established and both

partners survive. In the τ +1 period of the match after (Xτ , X̃τ ) ̸= (C,C), s commits to z̃ ∈ {c0, d0}.
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Since ŝ and s∗ have not committed and have the same action plan at τ +1, the payoff sequences that

ŝ and s∗ obtain with s are the same. □

Using the same logic, if the partner is a k-period tolerant strategy, the payoff difference of ŝ and

s∗ lies only in k + 1-th period and when (C,C) has not been established:

∀X̃z̃ ∈ S̃k, U(ŝ, X̃z̃)− U(s∗, X̃z̃) =

{
0 if (Xt, X̃t) = (C,C), ∃ t = 1, 2, . . . k,

δ2kU(z, z̃) otherwise,
(17)

where z is the commitment strategy of ŝ.

Next, we show that, among k-period or more tolerant partners, it is sufficient to look at k-period

tolerant partners, to compare the payoff of ŝ and s∗.

Step 2: For any k -period action sequence X̃ ∈ {C,D}k,

X̃z̃ ∈ X̃C+ ⇒ U(ŝ, X̃z̃) = U(ŝ, X̃c0),

X̃z̃ ∈ X̃D+ ⇒ U(ŝ, X̃z̃) = U(ŝ, X̃d0).

Proof of Step 2: Recall that ŝ commits to one of the c0- or the d0-strategies in k + 1-th period

at latest. If (Xt, X̃t) = (C,C) at some t ≦ k, clearly U(ŝ, X̃z̃) = U(ŝ, X̃c0) = U(ŝ, X̃d0) for any z̃,

since k + 1-period-plan does not matter. If (Xt, X̃t) ̸= (C,C) for all t ≦ k, in k + 1-th period, the

continuation payoff sequence of ŝ depends only on the k + 1-th period action by the partner, because

ŝ plays either c0 or d0. Hence any z̃ ∈ C+ (resp. z̃ ∈ D+) gives the same payoff as c0 (resp. d0) by

the partner. Q.E.D.

Proof of Proposition 2. Fix an arbitrary δ ∈ (δc0d0 , 1), an arbitrary T = 1, 2, . . ., and an arbitrary

p̄T ∈ PT . As in the one-period tolerant equilibrium example, it suffices to show the payoff equivalence

of all constituent strategies:

∀k = 0, 1, . . . , T, ∀Xz ∈ supp(p̄T ), v(Xz; p̄T ) = v0(c0;α(δ)) = v0(d0;α(δ)).

By mathematical induction, we show that any k-period tolerant strategy and its induced (k−1)-period

tolerant strategy have the same payoff under p̄T .
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Consider the c0- and d0-strategy, if they are in the support of the p̄T . The share of C-start

(tolerant) strategies in the matching pool determines their average payoffs. By construction, p̄T

satisfies p̄T (C+) =
p̄T

(
C+

)
p̄T

(
C+∪D+

) = α(δ). Hence

v(c0; p̄T ) = v(c0; p̄T (C+)) = v0(c0;α(δ)) = v0(d0;α(δ)) = v(d0; p̄T ). (18)

Take any 1-period tolerant strategy Xz ∈ supp(p̄T ) and its induced 0-period tolerant strategy

x =

{
c0 if X = C

d0 if X = D.

By Lemmas 2 and 6 and the definition of p̄T ,

∆U(Xz, x; p̄T )

∆L(Xz, x; p̄T )
=

δ2
∑

X̃∈{C,D}
(X,X̃ )̸=(C,C)

p̄T (X̃C+)U(z, c0) + p̄T (X̃D+)U(z, d0)

δ2
∑

X̃∈{C,D}
(X,X̃) ̸=(C,C)

p̄T (X̃C+)L(z, c0) + p̄T (X̃D+)L(z, d0)

=

∑
X̃∈{C,D}

(X,X̃) ̸=(C,C)

p̄T (X̃C+ ∪ X̃D+){α(δ)U(z, c0) + (1− α(δ))U(z, d0)}∑
X̃∈{C,D}

(X,X̃ )̸=(C,C)

p̄T (X̃C+ ∪ X̃D+){α(δ)L(z, c0) + (1− α(δ))L(z, d0)}
= v0(z;α(δ)).

Since z, x ∈ {c0, d0},
∆U(Xz, x; p̄T )

∆L(Xz, x; p̄T )
= v0(x;α(δ)).

By Lemma 1 (i), this implies that

v(Xz; p̄T ) = v(x; p̄T ).

Assume that for each m = 0, 1, . . . , k − 1, it is true that any m-period tolerant strategy Xz ∈

supp(p̄T ) is payoff-equivalent to its induced (m − 1)-period tolerant strategy X′
xm−1

. (Then they

are all payoff-equivalent to the c0- and d0-strategy as well.) Take any k-period tolerant strategy

Xz ∈ supp(p̄T ), and its induced (k − 1)-period tolerant strategy X′
xk

∈ S̃k−1. (If Xz ∈ supp(p̄T ) does

not exist, the Lemma trivially holds.) By Lemmas 2 and 6,

∆U(Xz,X
′
xk
; p̄T )

∆L(Xz,X′
xk
; p̄T )

=

∑
X̃∈{C,D}k

(Xt,X̃t )̸=(C,C) ∀t=1,...,k

p̄T (X̃C+ ∪ X̃D+)U0

(
z;α(δ)

)
∑

X̃∈{C,D}k
(Xt,X̃t )̸=(C,C) ∀t=1,...,k

p̄T (X̃C+ ∪ X̃D+)L0

(
z;α(δ)

)
= v0(z;α(δ)) = v(c0; p̄T ) = v(d0; p̄T ). (19)
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By assumption, any (m − 1)-period tolerant strategy is payoff-equivalent to c0 (or d0). Hence (19)

implies that

∆U(Xz,X
′
xk
; p̄T )

∆L(Xz,X′
xk
; p̄T )

= v(X′
xk
; p̄T ).

By Lemma 1 (i), this implies that Xz is payoff-equivalent to X′
xk
, which is payoff-equivalent to the

c0- and d0-strategy. Finally, recall Lemma 4 (Lemma 5 of GOS) which implies that payoff-equivalence

guarantees that the distribution is a Nash equilibrium. This completes the proof of Proposition 2.

Q.E.D.

Before going to the proof of Lemma 5, we give bounds to the average payoff difference between

a k-period tolerant strategy and its induced m-period tolerant strategy (see Definition 11) for any

m < k.

Lemma 7 Fix any k = 1, 2, . . . and any m < k. Take any k-period tolerant strategy Xz ∈ S̃k and its

induced m-period tolerant strategy X′
xm+1

∈ S̃m. Then, for any p ∈ P(S̃∞
0 ),

∆U(Xz,X
′
xm+1

; p)

∆L(Xz,X′
xm+1

; p)
≦ max

j=m+1,...,k
max

X̃∈{C,D}j
(Xt,X̃t )̸=(C,C),∀t=1,...,j

v0

(
xj+1;

p(X̃C+)

p(X̃C+ ∪ X̃D+)

)
; (20)

∆U(Xz,X
′
xm+1

; p)

∆L(Xz,X′
xm+1

; p)
≧ min

j=m+1,...,k
min

X̃∈{C,D}j
(Xt,X̃t )̸=(C,C),∀t=1,...,j

v0

(
xj+1;

p(X̃C+)

p(X̃C+ ∪ X̃D+)

)
, (21)

where

xj+1 =

{
c0 if Xj+1 = C

d0 if Xj+1 = D,

for j = m+ 1, . . . , k − 1, and xk+1 = z.

Proof of Lemma 7. Take any m < k and a k-period tolerant strategy sk := Xz ∈ S̃k. For each

j = m,m+ 1, . . . , k − 1, sk’s induced j-period tolerant strategy sj = X′
xj+1

∈ S̃j is defined by

X′ = (X1, . . . , Xj);

xj+1 =

{
c0 if Xj+1 = C

d0 if Xj+1 = D.
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For any p ∈ P(S̃∞
0 ), the payoff difference between sk and sm can be decomposed as

∆U(sk, sm; p) = ∆U(sk, sk−1; p)+∆U(sk−1, sk−2; p)+ . . .+∆U(sm+1, sm; p) =
k∑

j=m+1

∆U(sj , sj−1; p).

Similarly, the expected partnership length difference is decomposed as

∆L(sk, sm; p) = ∆L(sk, sk−1; p) + ∆L(sk−1, sk−2; p) + . . .+∆L(sm+1, sm; p) =
k∑

j=m+1

∆L(sj , sj−1; p).

By Lemma 6, for each j = m+ 1,m+ 2, . . . , k,

∆U(sj , sj−1; p)

∆L(sj , sj−1; p)
=

∑
X̃∈{C,D}j

(Xt,X̃t) ̸=(C,C) ∀t=1,...,j

δ2j p(X̃C+ ∪ X̃D+)U0

(
xj+1;

p(X̃C+)

p(X̃C+∪X̃D+)

)
∑

X̃∈{C,D}j
(Xt,X̃t )̸=(C,C) ∀t=1,...,j

δ2j p(X̃C+ ∪ X̃D+)L0

(
xj+1;

p(X̃C+)

p(X̃C+∪X̃D+)

) .

(Note that xk+1 = z.) By Lemma 2, for each j = m + 1,m + 2, . . . , k,
∆U(sj ,sj−1;p)
∆L(sj ,sj−1;p)

is bounded as

follows.

∆U(sj , sj−1; p)

∆L(sj , sj−1; p)
≦ max

X̃∈{C,D}j
(Xt,X̃t )̸=(C,C) ∀t=1,...,j

v0

(
xj+1;

p(X̃C+)

p(X̃C+ ∪ X̃D+)

)
. (22)

Furthermore, by Lemma 2 again,

∆U(sk, sm; p)

∆L(sk, sm; p)
=

∑k
j=m+1∆U(sj , sj−1; p)∑k
j=m+1∆U(sj , sj−1; p)

≦ max
j=m+1,...,k

∆U(sj , sj−1; p)

∆L(sj , sj−1; p)
. (23)

(22) and (23) imply that

∆U(sk, sm; p)

∆L(sk, sm; p)
≦ max

j=m+1,...,k

∆U(sj , sj−1; p)

∆L(sj , sj−1; p)
≦ max

j=m+1,...,k
max

X̃∈{C,D}j
(Xt,X̃t) ̸=(C,C) ∀t=1,...,j

v0

(
xj+1;

p(X̃C+)

p(X̃C+ ∪ X̃D+)

)
.

This is (20). Derivation of (21) is analogous. Q.E.D.

Proof of Lemma 5. Fix an arbitrary δ ∈ (δc0d0 , 1), an arbitrary T = 0, 1, 2, . . ., an arbitrary

q ∈ MT (δ), and any sT ∈ S̃T . (Since p̄T is full-support, sT ∈ supp(p̄T ).) Let

α̂ := sup
X∈{C,D}T+k, k=1,2,...

q
(
XC+∪XD+

)
>0

q
(
XC+

)
q
(
XC+ ∪XD+

)(< α(δ)).
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Step 1: There exists ϵ(sT ) ∈ (0, 1) such that for any ϵ ∈ (0, ϵ(sT )),

v(sT ; (1− ϵ)p̄T + ϵ · q) > max{v0(c0; α̂), v0(d0; α̂)}.

Proof of Step 1: This is straightforward from

lim
ϵ→0

v(sT ; (1− ϵ)p̄T + ϵ · q) = v0(c0;α(δ)) = v0(d0;α(δ))

and the fact that v0(c0;α) and v0(d0;α) are increasing in α, so that max{v0(c0; α̂), v0(d0; α̂)} <

v0(c0;α(δ)) = v0(d0;α(δ)). □

Without loss of generality, assume that S(sT ) ∩ supp(q) ̸= ∅ (if not, the statement (13) is trivial)

and take any s′ = Xz ∈ S(sT ) ∩ supp(q) (thus |X| = T + k for some k ≧ 1 and z ∈ {c0, d0}). Since

S(sT ) ∩ supp(q) ̸= ∅, q(XC+ ∪XD+) > 0. Below, write pPE(ϵ) = (1− ϵ)p̄T + ϵ · q for any ϵ ∈ (0, 1).

Step 2:

∀ϵ ∈ (0, 1),
∆U(s′, sT ; p

PE(ϵ))

∆L(s′, sT ; pPE(ϵ))
< max{v0(c0; α̂), v0(d0; α̂)}. (24)

Proof of Step 2: The bound (20) in Lemma 7 implies that

∆U(s′, sT ; p
PE(ϵ))

∆L(s′, sT ; pPE(ϵ))
≦ max

j=T+1,...,T+k
max

X̃∈{C,D}j
(Xt,X̃t )̸=(C,C) ∀t=1,...,j

v0

(
xj+1;

pPE(X̃C+)

pPE(X̃C+ ∪ X̃D+)

)
,

where xj+1 = c0 (resp. d0) if Xj+1 = C (resp. D) for each j = T + 1, . . . , T + k − 1, and xT+k+1 = z.

Since X̃C+ and X̃D+ are subsets of T+1-period and longer tolerant strategies, pPE(X̃C+) = ϵ·q(X̃C+)

and pPE(X̃C+ ∪ X̃D+) = ϵ · q(X̃C+ ∪ X̃D+).
30 Hence the above inequality is equivalent to

∆U(s′, sT ; p
PE(ϵ))

∆L(s′, sT ; pPE(ϵ))
≦ max

j=T+1,...,T+k
max

X̃∈{C,D}j
(Xt,X̃t )̸=(C,C) ∀t=1,...,j

v0

(
xj+1;

q(X̃C+)

q(X̃C+ ∪ X̃D+)

)
.

Thus the upper bound is independent of ϵ.

Since v0(c0;α) and v0(d0;α) are increasing in α, and by the assumption q ∈ MT (δ), for each

j = T + 1, . . . , T + k,

max
X̃∈{C,D}j

(Xt,X̃t )̸=(C,C) ∀t=1,...,j

v0

(
xj+1;

q(X̃C+)

q(X̃C+ ∪ X̃D+)

)
≦ v0(xj+1; α̂) ≦ max{v0(c0; α̂), v0(d0; α̂)},

30This is not always true if the equilibrium p̄T is not full support. For example, if some k ≦ T -period tolerant strategies
are absent in p̄T , then the class of X̃C+ can contain both equilibrium strategies and mutant strategies.
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i.e., (24) holds. □

Finally, note that S̃T is a finite set. Hence there exists

ϵT = min
sT∈S̃T

ϵ(sT ),

and by Steps 1 and 2, for any ϵ ∈ (0, ϵT ), any sT ∈ S̃T , and any s′ ∈ S(sT ) ∩ supp(q),

∆U(s′, sT ; p
PE(ϵ))

∆L(s′, sT ; pPE(ϵ))
≦ max{v0(c0; α̂), v0(d0; α̂)} < v(sT ; p

PE(ϵ)).

By Lemma 1 (i),

v(s′; pPE(ϵ)) < v(sT ; p
PE(ϵ)). Q .E .D .

Proof of Proposition 3. Fix any T ∈ {0, 1, 2, . . .}, any p̄T ∈ P ◦
T and any m ∈ {T + 1, T + 2, . . .}.

Step 1: There exists (in fact many) q ∈ MT (δ) ∩ int(P(S̃m
0 )) such that

∀k = 0, 1, . . . , T − 1, ∀ sk ∈ S̃k, q(sk) = p̄T (sk), (25)

∀sT ∈ S̃T , q(sT ) +
∑

s′∈S(sT )

q(s′) = p̄T (sT ). (26)

Proof of Step 1: Recall that MT (δ) does not restrict q(s) for any s ∈ S̃k for any k = 0, 1, . . . , T , and

only the relative ratio among s ∈ S̃k for k = T + 1, T + 2, . . .. Hence there exists q which satisfies the

above equalities in MT (δ). Moreover, such q can be a “full-support” q ∈ int(P(S̃m
0 )) because MT (δ)

does not require that any strategy has a 0 probability, and since p̄T is full-support, p̄T (sk) > 0 for any

k = 0, 1, . . . , T . □

Step 2: The above q satisfies (12). That is, there exists ϵT ∈ (0, 1) such that for any ϵ ∈ (0, ϵT ),

∑
s∈supp(p̄T )

p̄T (s)v(s; (1− ϵ)p̄T + ϵ · q) >
∑

s′∈supp(q)

q(s′)v(s′; (1− ϵ)p̄T + ϵ · q). (12)

Proof of Step 2: Since q ∈ MT (δ), External Stability Lemma 5 implies that there exists ϵT ∈ (0, 1)

such that for any ϵ ∈ (0, ϵT ),

∀sT ∈ S̃T , ∀s′ ∈ S(sT ) ∩ supp(q), v(sT ; (1− ϵ)p̄T + ϵ · q) > v(s′; (1− ϵ)p̄T + ϵ · q).
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Therefore, for each sT ∈ S̃T ,∑
s′∈S(sT )∩supp(q)

q(s′)v(s′; (1− ϵ)p̄T + ϵ · q) + q(sT )v(sT ; (1− ϵ)p̄T + ϵ · q)

<
∑

s′∈S(sT )∩supp(q)

q(s′)v(sT ; (1− ϵ)p̄T + ϵ · q) + q(sT )v(sT ; (1− ϵ)p̄T + ϵ · q)

= [q(sT ) +
∑

s′∈S(sT )∩supp(q)

q(s′)] · v(sT ; (1− ϵ)p̄T + ϵ · q)

= p̄T (sT ) · v(sT ; (1− ϵ)p̄T + ϵ · q) from (26).

Summing up both sides for all sT ’s,∑
sT∈S̃T

q(sT )v(sT ; (1− ϵ)p̄T + ϵ · q) +
∑

sT∈S̃T

∑
s′∈S(sT )∩supp(q)

q(s′)v(s′; (1− ϵ)p̄T + ϵ · q)

<
∑

sT∈S̃T

p̄T (sT ) · v(sT ; (1− ϵ)p̄T + ϵ · q).

From (25), for any k = 0, 1, . . . , T − 1 and sk ∈ S̃k,

q(sk)v(sk; (1− ϵ)p̄T + ϵ · q) = p̄T (sk)v(sk; (1− ϵ)p̄T + ϵ · q).

Adding all these gives

T−1∑
k=0

∑
sk∈S̃k

q(sk)v(sk; (1− ϵ)p̄T + ϵ · q)

+
∑

sT∈S̃T

q(sT )v(sT ; (1− ϵ)p̄T + ϵ · q) +
∑

sT∈S̃T

∑
s′∈S(sT )∩supp(q)

q(s′)v(s′; (1− ϵ)p̄T + ϵ · q)

<

T−1∑
k=0

∑
sk∈S̃k

p̄T (sk)v(sk; (1− ϵ)p̄T + ϵ · q)

+
∑

sT∈S̃T

p̄T (sT ) · v(sT ; (1− ϵ)p̄T + ϵ · q).

Since supp(q) = S̃m
0 and supp(p̄T ) = S̃T

0 , the LHS is
∑

s′∈supp(q) q(s
′)v(s′; (1 − ϵ)p̄T + ϵ · q) and the

RHS is
∑

s∈supp(p̄T ) p̄T (s)v(s; (1− ϵ)p̄T + ϵ · q). □

Step 3: There exists a (sufficiently small) real number r > 0 such that for any q′ ∈ int(P(S̃m
0 )) such

that |q − q′| < r, q′ ∈ MT (δ) and∑
s∈supp(p̄T )

p̄T (s)v(s; (1− ϵ)p̄T + ϵ · q′) >
∑

s′∈supp(q)

q′(s′)v(s′; (1− ϵ)p̄T + ϵ · q′). (27)
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Proof of Step 3: Since the condition of MT (δ) is a strict inequality, there exists r1 > 0 such that for

any q′ ∈ int(P(S̃m
0 )) such that |q − q′| < r1,

sup
X∈{C,D}T+k, k=1,2,...

q′
(
XC+∪XD+

)
>0

q′
(
XC+

)
q′
(
XC+ ∪XD+

) < α(δ)

holds, i.e., q′ ∈ MT (δ).

Since (12) is a strict inequality, there exists another r2 > 0 such that for any q′′ ∈ int(P(S̃m
0 ))

such that |q − q′′| < r2,∣∣∣ ∑
s′∈supp(q)

q(s′)v(s′; (1− ϵ)p̄T + ϵ · q)−
∑

s′∈supp(q)

q′′(s′)v(s′; (1− ϵ)p̄T + ϵ · q′′)
∣∣∣

<
∑

s∈supp(p̄T )

p̄T (s)v(s; (1− ϵ)p̄T + ϵ · q)−
∑

s′∈supp(q)

q(s′)v(s′; (1− ϵ)p̄T + ϵ · q).

Take r = min{r1, r2} and we have (27). □

Step 3 shows that there is an open ball around each q in Step 1 with a non-empty interior which

makes p̄T mean stable. Q.E.D.

Proof of Proposition 4. (i) Fix an arbitrary polymorphic Nash equilibrium p such that supp(p) ⊂

{Dk
d0

| k ∈ {0, 1, . . . ,K}}. We show that p is not a S-NS(S) for any δ ∈ (0, 1). Consider the secret-

handshake strategy Dτ+1
c0 against the maximal tolerant strategy in the support of p. The payoff

sequences of the strategies in p, Dτ+1
c0 , and Dτ+1

d0
are shown in Table 4.

Let pPE = (1− ϵ)p+ ϵ ·Dτ+1
c0 . From Table 4,

∆U(Dτ+1
c0 , Dτ

d0
; pPE)

∆L(Dτ+1
c0 , Dτ

d0
; pPE)

= c > d = v(Dτ
d0 ; p

PE).

By Lemma 1 (i),

∀ϵ ∈ (0, 1), v(Dτ+1
c0 ; pPE) > v(Dτ

d0 ; p
PE).

Therefore p is not a S-NS(S) (although d0, Dd0 etc. may not exist in p, Dτ
d0

exists).

(ii) Recall that the maximal duration of the tolerant phase among the equilibrium strategies is denoted

by τ = max{k : Dk
d0

∈ supp(p)}. Then τ ≦ K < ∞. We show that p does not satisfy External
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you \ partner d0 Dd0 · · · Dτ
d0

Dτ+1
c0 Dτ+1

d0
d0 d d · · · d d d

Dd0 d d, d · · · d, d d, d d, d
...

...
...

...
...

...
...

Dτ
d0

d d, d · · ·
τ+1 times︷ ︸︸ ︷
d, · · · , d

τ+1 times︷ ︸︸ ︷
d, · · · , d

τ+1 times︷ ︸︸ ︷
d, · · · , d

Dτ+1
c0 d d, d · · ·

τ+1 times︷ ︸︸ ︷
d, · · · , d

τ+1 times︷ ︸︸ ︷
d, · · · , d, c, c . . .

τ+1 times︷ ︸︸ ︷
d, · · · , d, ℓ

Dτ+1
d0

d d, d · · ·
τ+1 times︷ ︸︸ ︷
d, · · · , d

τ+1 times︷ ︸︸ ︷
d, · · · , d, g

τ+1 times︷ ︸︸ ︷
d, · · · , d, d

Table 4: Payoff sequence comparison for D-always equilibrium

Stability with respect to MT (δ) for any T = 0, 1, 2, . . . , τ . Consider a mutant strategy distribution

q = α · Dτ+1
c0 + (1 − α)Dτ+1

d0
such that α ∈ (0, α(δ)). For any T = 0, 1, 2, . . . , τ , q ∈ MT (δ). Let

pPE = (1− ϵ)p+ ϵ · q. We show that

∀s ∈ supp(p), ∀ϵ ∈ (0, 1), v(s; pPE) ≦ v(Dτ+1
d0

; pPE).

For any equilibrium strategy Dk
d0

∈ supp(p), the mutant strategy Dτ+1
d0

is more tolerant and hence

∆L(Dτ+1
d0

, Dk
d0
; pPE) > 0. In view of Lemma 1, it suffices to show that

∆U(Dτ+1
d0

, Dk
d0
; pPE)

∆L(Dτ+1
d0

, Dk
d0
; pPE)

≧ v(Dk
d0 ; p

PE) = d. (28)

Consider k = 0 as an example. From Table 4,

∆U(Dτ+1
d0

, d0; p
PE)

=(1− ϵ)[p(Dd0)δ
2d+ p(D2

d0)(δ
2d+ δ4d) + · · ·+ p(Dτ

d0)(δ
2d+ · · ·+ δ2τd)]

+ ϵ[δ2τd+ δ2(τ+1)(αg + (1− α)d)]

= (1− ϵ)p(Dm
d0 ; 1 ≦ m ≦ τ)δ2d+ (1− ϵ)p(Dm

d0 ; 2 ≦ m ≦ τ)δ4d+ · · ·+ [(1− ϵ)p(Dτ
d0) + ϵ]δ2τd

+ ϵδ2(τ+1)[αg + (1− α)d].
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you \ partner cT DT
c0 DT−1Cc0

cT

T times︷ ︸︸ ︷
d, · · · , d, c, . . .

T times︷ ︸︸ ︷
d, · · · , d, c, . . .

T−1 times︷ ︸︸ ︷
d, · · · , d , g

DT
c0

T times︷ ︸︸ ︷
d, · · · , d, c, . . .

T times︷ ︸︸ ︷
d, · · · , d, c, . . .

T−1 times︷ ︸︸ ︷
d, · · · , d , g, c, . . .

Table 5: Payoff sequences of the intolerant cT and tolerant DT
c0

Analogously, for an arbitrary k,

∆U(Dτ+1
d0

, Dk
d0 ; p

PE) =

τ∑
n=k+1

p(Dm
d0 ;n ≦ m ≦ τ) · δ2nd+ ϵδ2τd+ ϵδ2(τ+1)[αg + (1− α)d];

∆L(Dτ+1
d0

, Dk
d0 ; p

PE) =

τ∑
n=k+1

p(Dm
d0 ;n ≦ m ≦ τ) · δ2n + ϵδ2τ + ϵδ2(τ+1).

By Lemma 2, for any ϵ ∈ (0, 1) and any α > 0, we have

∆U(Dτ+1
d0

, Dk
d0
; pPE)

∆L(Dτ+1
d0

, Dk
d0
; pPE)

≧ min{d, v(d0;α)} ≧ d. (28)

This completes the proof of (ii). Q.E.D.

Proof of Proposition 5. The fact that a cT -distribution satisfies S-NS(S) for T ≧ τ(δ) is proved

in Greve-Okuno. Consider q = βDT−1Cc0 + (1 − β)DT
c0 . Take an arbitrary ϵ ∈ (0, 1) and let pPE =

(1 − ϵ)cT + ϵ · q. The payoff difference between the (intolerant) trust-building cT -strategy and the

tolerant DT
c0-strategy is when they meet the earlier cooperator DT−1Cc0-strategy. In t = T , the cT -

player receives g but ends the partnership, while the tolerant DT
c0-strategy keeps the partnership to

establish a long-term cooperative partnership from T + 1-the period on. See Table 5. Hence

∆U(DT
c0 , cT ; p

PE)

∆L(DT
c0 , cT ; p

PE)
= c.

Note that this does not depend on β or ϵ. The post-entry average payoff of cT is

v(cT ; p
PE) =

(1 + · · ·+ δ2(T−2))d+ δ2(T−1)[{(1− ϵ) + ϵ(1− β)}(d+ c
1−δ2

) + ϵ · βg]
{(1− ϵ) + ϵ(1− β)} 1

1−δ2
+ ϵ · β 1−δ2T

1−δ2

.

When β = 0, v(cT ; p
PE) = v(cT , cT ) = (1− δ2T )d+ δ2T c < c. Hence there exists β ∈ (0, 1) such that

for any β ∈ (0, β) and any ϵ ∈ (0, 1),

∆U(DT
c0 , cT ; p

PE)

∆L(DT
c0 , cT ; p

PE)
= c > v(cT ; p

PE).

46



Then Lemma 1 (i) implies that

∀β ∈ (0, β), ∀ϵ ∈ (0, 1), v(DT
c0 ; p

PE) > v(cT ; p
PE),

violating External Stability. Finally, there exists β ∈ (0,min{β, α(δ)}) so that q ∈ Mt(δ) for any

t = 0, 1, 2, . . . , T − 1. Q.E.D.
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